General Information of Drug Combination (ID: DCYXN6J)

Drug Combination Name
LIAROZOLE Mepacrine
Indication
Disease Entry Status REF
Amelanotic melanoma Investigative [1]
Component Drugs LIAROZOLE   DM4OYXE Mepacrine   DMU8L7C
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: MDA-MB-435
Zero Interaction Potency (ZIP) Score: 0.52
Bliss Independence Score: 3.57
Loewe Additivity Score: 1.47
LHighest Single Agent (HSA) Score: 1.73

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of LIAROZOLE
Disease Entry ICD 11 Status REF
Dermatological disease DA24.Y Phase 2/3 [2]
LIAROZOLE Interacts with 2 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Aromatase (CYP19A1) TTSZLWK CP19A_HUMAN Inhibitor [4]
Cytochrome P450 26 (CYP26A1) TTD7Q0R CP26A_HUMAN Inhibitor [5]
------------------------------------------------------------------------------------
LIAROZOLE Interacts with 1 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 26A1 (CYP26A1) OTL1DFWV CP26A_HUMAN Decreases Activity [6]
------------------------------------------------------------------------------------
Indication(s) of Mepacrine
Disease Entry ICD 11 Status REF
Discovery agent N.A. Investigative [3]
Mepacrine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Phospholipase A2 (PLA2G1B) TT9V5JH PA21B_HUMAN Inhibitor [3]
------------------------------------------------------------------------------------
Mepacrine Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [7]
------------------------------------------------------------------------------------
Mepacrine Interacts with 2 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [8]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [8]
------------------------------------------------------------------------------------
Mepacrine Interacts with 22 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Myc proto-oncogene protein (MYC) OTPV5LUK MYC_HUMAN Decreases Expression [9]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Activity [10]
Zinc finger protein GLI1 (GLI1) OT1BTAJO GLI1_HUMAN Decreases Expression [9]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [11]
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (PLCG1) OTSBQR6D PLCG1_HUMAN Decreases Phosphorylation [12]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Expression [9]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [11]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [11]
Catenin beta-1 (CTNNB1) OTZ932A3 CTNB1_HUMAN Decreases Expression [9]
Vascular endothelial growth factor receptor 2 (KDR) OT15797V VGFR2_HUMAN Decreases Phosphorylation [12]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Decreases Expression [13]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [9]
Casein kinase I isoform alpha (CSNK1A1) OTJ6O1IC KC1A_HUMAN Increases Expression [9]
Glycogen synthase kinase-3 beta (GSK3B) OTL3L14B GSK3B_HUMAN Increases Expression [9]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Cleavage [11]
Focal adhesion kinase 1 (PTK2) OT3Q1JDY FAK1_HUMAN Decreases Phosphorylation [12]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [11]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [14]
Forkhead box protein P3 (FOXP3) OTA9Z9OC FOXP3_HUMAN Increases Expression [11]
F-box/WD repeat-containing protein 1A (BTRC) OT2EZDGR FBW1A_HUMAN Decreases Expression [11]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Increases Metabolism [8]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Transport [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 DOT(s)

References

1 Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.Hum Genet. 2018 Apr;137(4):293-303. doi: 10.1007/s00439-018-1882-3. Epub 2018 Apr 24.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5210).
3 Involvement of protein kinase C activation in L-leucine-induced stimulation of protein synthesis in l6 myotubes. Cytotechnology. 2003 Nov;43(1-3):97-103.
4 Pharmacophore modeling strategies for the development of novel nonsteroidal inhibitors of human aromatase (CYP19). Bioorg Med Chem Lett. 2010 May 15;20(10):3050-64.
5 Novel azolyl-(phenylmethyl)]aryl/heteroarylamines: potent CYP26 inhibitors and enhancers of all-trans retinoic acid activity in neuroblastoma cells. Bioorg Med Chem. 2008 Sep 1;16(17):8301-13.
6 Discovery of inhibitors of MCF-7 tumor cell adhesion to endothelial cells and investigation on their mode of action. Arch Pharm (Weinheim). 2004 Dec;337(12):687-94. doi: 10.1002/ardp.200400622.
7 Arginine-482 is not essential for transport of antibiotics, primary bile acids and unconjugated sterols by the human breast cancer resistance protein (ABCG2). Biochem J. 2005 Jan 15;385(Pt 2):419-26.
8 Quinacrine is mainly metabolized to mono-desethyl quinacrine by CYP3A4/5 and its brain accumulation is limited by P-glycoprotein. Drug Metab Dispos. 2006 Jul;34(7):1136-44.
9 Nanoquinacrine caused apoptosis in oral cancer stem cells by disrupting the interaction between GLI1 and catenin through activation of GSK3. Toxicol Appl Pharmacol. 2017 Sep 1;330:53-64. doi: 10.1016/j.taap.2017.07.008. Epub 2017 Jul 15.
10 High-throughput measurement of the Tp53 response to anticancer drugs and random compounds using a stably integrated Tp53-responsive luciferase reporter. Carcinogenesis. 2002 Jun;23(6):949-57. doi: 10.1093/carcin/23.6.949.
11 Quinacrine induces the apoptosis of human leukemia U937 cells through FOXP3/miR-183/-TrCP/SP1 axis-mediated BAX upregulation. Toxicol Appl Pharmacol. 2017 Nov 1;334:35-46. doi: 10.1016/j.taap.2017.08.019. Epub 2017 Sep 1.
12 Quinacrine is active in preclinical models of glioblastoma through suppressing angiogenesis, inducing oxidative stress and activating AMPK. Toxicol In Vitro. 2022 Sep;83:105420. doi: 10.1016/j.tiv.2022.105420. Epub 2022 Jun 17.
13 Multiple-endpoint in vitro carcinogenicity test in human cell line TK6 distinguishes carcinogens from non-carcinogens and highlights mechanisms of action. Arch Toxicol. 2021 Jan;95(1):321-336. doi: 10.1007/s00204-020-02902-3. Epub 2020 Sep 10.
14 Why are most phospholipidosis inducers also hERG blockers?. Arch Toxicol. 2017 Dec;91(12):3885-3895. doi: 10.1007/s00204-017-1995-9. Epub 2017 May 27.