General Information of Drug (ID: DMG6TS2)

Drug Name
GW873140
Synonyms
Aplaviroc; Aplaviroc HCl; Aplaviroc hydrochloride; AK 602; AK602; GSK873140; GW 873140; ONO 4128; AK-602; Aplaviroc hydrochloride (USAN); GW-873140; ONO-4128; Benzoic acid, 4-[4-[[1-butyl-3-[(R)-cyclohexylhydroxymethyl]-2,5-dioxo-1,4,9-triazaspiro[5.5]undec-9-yl]methyl]phenoxy]-& Soluble CD4; 4-[4-[[(9R)-11-butyl-9-[(R)-cyclohexyl(hydroxy)methyl]-7,10-dioxo-3,8,11-triazaspiro[5.5]undecan-3-yl]methyl]phenoxy]benzoic acid; 4-[4-[[(9R)-11-butyl-9-[(R)-cyclohexyl(hydroxy)methyl]-7,10-dioxo-3,8,11-triazaspiro[5.5]undecan-3-yl]methyl]phenoxy]benzoic acid hydrochloride; 873140 Compound
Indication
Disease Entry ICD 11 Status REF
Human immunodeficiency virus-1 infection 1C62 Discontinued in Phase 3 [1], [2]
Drug Type
Small molecular drug
Structure
3D MOL 2D MOL
#Ro5 Violations (Lipinski): 1 Molecular Weight (mw) 577.7
Topological Polar Surface Area (xlogp) 3.1
Rotatable Bond Count (rotbonds) 10
Hydrogen Bond Donor Count (hbonddonor) 3
Hydrogen Bond Acceptor Count (hbondacc) 7
Chemical Identifiers
Formula
C33H43N3O6
IUPAC Name
4-[4-[[(3R)-1-butyl-3-[(R)-cyclohexyl(hydroxy)methyl]-2,5-dioxo-1,4,9-triazaspiro[5.5]undecan-9-yl]methyl]phenoxy]benzoic acid
Canonical SMILES
CCCCN1C(=O)[C@H](NC(=O)C12CCN(CC2)CC3=CC=C(C=C3)OC4=CC=C(C=C4)C(=O)O)[C@@H](C5CCCCC5)O
InChI
InChI=1S/C33H43N3O6/c1-2-3-19-36-30(38)28(29(37)24-7-5-4-6-8-24)34-32(41)33(36)17-20-35(21-18-33)22-23-9-13-26(14-10-23)42-27-15-11-25(12-16-27)31(39)40/h9-16,24,28-29,37H,2-8,17-22H2,1H3,(H,34,41)(H,39,40)/t28-,29-/m1/s1
InChIKey
GWNOTCOIYUNTQP-FQLXRVMXSA-N
Cross-matching ID
PubChem CID
3001322
CAS Number
461443-59-4
TTD ID
D0G6SZ
INTEDE ID
DR1794

Molecular Interaction Atlas of This Drug


Drug Therapeutic Target (DTT)
DTT Name DTT ID UniProt ID MOA REF
C-C chemokine receptor type 5 (CCR5) TT2CEJG CCR5_HUMAN Binder [3], [4]

Drug-Metabolizing Enzyme (DME)
DME Name DME ID UniProt ID MOA REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Substrate [5]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Substrate [5]
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This Drug

Molecular Expression Atlas of This Drug

The Studied Disease Human immunodeficiency virus-1 infection
ICD Disease Classification 1C62
Molecule Name Molecule Type Gene Name p-value Fold-Change Z-score
C-C chemokine receptor type 5 (CCR5) DTT CCR5 9.30E-01 -0.08 -0.11
Mephenytoin 4-hydroxylase (CYP2C19) DME CYP2C19 5.48E-01 1.12E-01 7.24E-01
Cytochrome P450 3A4 (CYP3A4) DME CYP3A4 9.81E-01 2.72E-01 6.95E-01
Molecular Expression Atlas (MEA) Jump to Detail Molecular Expression Atlas of This Drug

References

1 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 805).
2 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800018317)
3 In vitro and clinical investigation of the relationship between CCR5 receptor occupancy and anti-HIV activity of Aplaviroc. J Clin Pharmacol. 2008 Oct;48(10):1179-88.
4 Progress in targeting HIV-1 entry. Drug Discov Today. 2005 Aug 15;10(16):1085-94.
5 Hepatotoxicity observed in clinical trials of aplaviroc (GW873140). Antimicrob Agents Chemother. 2008 Mar;52(3):858-65.
6 Expression levels and activation of a PXR variant are directly related to drug resistance in osteosarcoma cell lines. Cancer. 2007 Mar 1;109(5):957-65.
7 Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica. 1998 Jun;28(6):539-47.
8 Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004 Sep;310(3):1062-75.
9 Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab Dispos. 2013 Feb;41(2):263-9.
10 Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies. J Pharm Pharmacol. 2017 Dec;69(12):1762-1772.
11 Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol. 2012 Apr;165(8):2787-98.
12 Effects of morin on the pharmacokinetics of etoposide in rats. Biopharm Drug Dispos. 2007 Apr;28(3):151-6.
13 The metabolism of zidovudine by human liver microsomes in vitro: formation of 3'-amino-3'-deoxythymidine. Biochem Pharmacol. 1994 Jul 19;48(2):267-76.
14 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
15 High-dose rabeprazole/amoxicillin therapy as the second-line regimen after failure to eradicate H. pylori by triple therapy with the usual doses of a proton pump inhibitor, clarithromycin and amoxicillin. Hepatogastroenterology. 2003 Nov-Dec;50(54):2274-8.
16 Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys. 1997 Oct 1;346(1):161-9.
17 Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006 Mar 13;25(11):1679-91.
18 CYP2C19*17 is associated with decreased breast cancer risk. Breast Cancer Res Treat. 2009 May;115(2):391-6.
19 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
20 Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol. 1995 Dec;353(1):116-21.
21 Diclofenac and its derivatives as tools for studying human cytochromes P450 active sites: particular efficiency and regioselectivity of P450 2Cs. Biochemistry. 1999 Oct 26;38(43):14264-70.
22 A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother. 1998 May;32(5):554-63.
23 Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology. 2001 Feb;120(2):525-33.
24 Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth. 1998 Jun;80(6):788-95.
25 Rapamycin enhances aplaviroc anti-HIV activity: implications for the clinical development of novel CCR5 antagonists. Antiviral Res. 2009 Jul;83(1):86-9.
26 HIV entry: new insights and implications for patient management. Curr Opin Infect Dis. 2009 Feb;22(1):35-42.
27 Agonist-induced internalization of CC chemokine receptor 5 as a mechanism to inhibit HIV replication. J Pharmacol Exp Ther. 2011 Jun;337(3):655-62.
28 Species selectivity of small-molecular antagonists for the CCR5 chemokine receptor. Int Immunopharmacol. 2007 Dec 5;7(12):1528-34.
29 The return of PRO 140, a CCR5-directed mAb. Curr Opin HIV AIDS. 2018 Jul;13(4):346-353.
30 The dual CCR5 and CCR2 inhibitor cenicriviroc does not redistribute HIV into extracellular space: implications for plasma viral load and intracellular DNA decline. J Antimicrob Chemother. 2015 Mar;70(3):750-6.
31 A dual CCR2/CCR5 chemokine antagonist, BMS-813160. Expert Opin Ther Pat. 2011 Dec;21(12):1919-24.
32 Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV. N Engl J Med. 2014 March 6; 370(10): 901-910.
33 An imidazopiperidine series of CCR5 antagonists for the treatment of HIV: the discovery of N-{(1S)-1-(3-fluorophenyl)-3-[(3-endo)-3-(5-isobutyryl-2-methyl-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridin-1-yl)-8-azabicyclo[3.2.1]oct-8-yl]propyl}acetamide (PF-232798). J Med Chem. 2011 Jan 13;54(1):67-77.