General Information of Drug Off-Target (DOT) (ID: OT0LHUE4)

DOT Name Intraflagellar transport protein 70B (IFT70B)
Synonyms Tetratricopeptide repeat protein 30B; TPR repeat protein 30B
Gene Name IFT70B
UniProt ID
IT70B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MAGLSGAQIPDGEFTAVVYRLIRNARYAEAVQLLGGELQRSPRSRAGLSLLGYCYYRLQE
FALAAECYEQLGQLHPELEQYRLYQAQALYKACLYAEATRVAFLLLDNPAYHSRVLRLQA
AIKYSEGDLPGSRSLVEQLPSREGGEESGGENETDGQINLGCLLYKEGQYEAACSKFFAA
LQASGYQPDLSYNLALAYYSSRQYASALKHIAEIIERGIRQHPELGVGMTTEGIDVRSVG
NTLVLHQTALVEAFNLKAAIEYQLRNYEAAQEALTDMPPRAEEELDPVTLHNQALMNMDA
RPTEGFEKLQFLLQQNPFPPETFGNLLLLYCKYEYFDLAADVLAENAHLIYKFLTPYLYD
FLDAVITCQTAPEEAFIKLDGLAGMLTEVLRKLTIQVQEARHNRDDEAIKKAVNEYDETM
EKYIPVLMAQAKIYWNLENYPMVEKIFRKSVEFCNDHDVWKLNVAHVLFMQENKYKEAIG
FYEPIVKKHYDNILNVSAIVLANLCVSYIMTSQNEEAEELMRKIEKEEEQLSYDDPDKKM
YHLCIVNLVIGTLYCAKGNYDFGISRVIKSLEPYNKKLGTDTWYYAKRCFLSLLENMSKH
TIMLRDSVIQECVQFLEHCELHGRNIPAVIEQPLEEERMHVGKNTVTYESRQLKALIYEI
IGWNI
Function
Required for polyglutamylation of axonemal tubulin. Plays a role in anterograde intraflagellar transport (IFT), the process by which cilia precursors are transported from the base of the cilium to the site of their incorporation at the tip.
Reactome Pathway
Intraflagellar transport (R-HSA-5620924 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Intraflagellar transport protein 70B (IFT70B). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Intraflagellar transport protein 70B (IFT70B). [9]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Intraflagellar transport protein 70B (IFT70B). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Intraflagellar transport protein 70B (IFT70B). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Intraflagellar transport protein 70B (IFT70B). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Intraflagellar transport protein 70B (IFT70B). [5]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Intraflagellar transport protein 70B (IFT70B). [6]
Melphalan DMOLNHF Approved Melphalan decreases the expression of Intraflagellar transport protein 70B (IFT70B). [7]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Intraflagellar transport protein 70B (IFT70B). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Intraflagellar transport protein 70B (IFT70B). [10]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Intraflagellar transport protein 70B (IFT70B). [11]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate decreases the expression of Intraflagellar transport protein 70B (IFT70B). [12]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Intraflagellar transport protein 70B (IFT70B). [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
7 Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One. 2012;7(2):e30758. doi: 10.1371/journal.pone.0030758. Epub 2012 Feb 17.
8 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
12 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.