General Information of Drug Off-Target (DOT) (ID: OTEM6DFZ)

DOT Name Major facilitator superfamily domain-containing protein 3 (MFSD3)
Gene Name MFSD3
UniProt ID
MFSD3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07690
Sequence
MRGKLLPLAGLYLVQGLPYGLQSGLLPVLLRAGGLSLTRVGLAKVLYAPWLLKLAWAPLV
DAQGSARAWVTRSTAGLGLVCGLLAGLPPPGAGQAGLPAAVAGLLLLLNLGAAMQDVALD
ALAVQLLEPAELGPGNTVQVVAYKLGAALAGGALLALLPTFSWPQLFLLLAATYWLAAAL
AWAAPALRRLPQQPPSEQRPHTAHLLRDVLAVPGTVWTAGFVLTYKLGEQGASSLFPLLL
LDHGVSAPELGLWNGVGAVVCSIAGSSLGGTLLAKHWKLLPLLRSVLRFRLGGLACQTAL
VFHLDTLGASMDAGTILRGSALLSLCLQHFLGGLVTTVTFTGMMRCSQLAPRALQATHYS
LLATLELLGKLLLGTLAGGLADGLGPHPCFLLLLILSAFPVLYLDLAPSTFL

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Major facilitator superfamily domain-containing protein 3 (MFSD3). [1]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Major facilitator superfamily domain-containing protein 3 (MFSD3). [2]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Major facilitator superfamily domain-containing protein 3 (MFSD3). [3]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Major facilitator superfamily domain-containing protein 3 (MFSD3). [2]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Major facilitator superfamily domain-containing protein 3 (MFSD3). [4]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Major facilitator superfamily domain-containing protein 3 (MFSD3). [5]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
4 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
5 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.