General Information of Drug Off-Target (DOT) (ID: OTG3VKPS)

DOT Name m7GpppN-mRNA hydrolase (DCP2)
Synonyms EC 3.6.1.62; Nucleoside diphosphate-linked moiety X motif 20; Nudix motif 20; mRNA-decapping enzyme 2; hDpc
Gene Name DCP2
UniProt ID
DCP2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5MP0; 5QOH; 5QOI; 5QOJ; 5QOK; 5QOL; 5QOM; 5QON; 5QOO; 5QOP; 5QOQ; 5QOR; 5QOS; 5QOT; 5QOU; 5QOV; 5QOW; 5QOX; 5QOY; 5QOZ; 5QP0; 5QP1; 5QP2; 5QP3; 5QP4; 5QP5; 5QP6; 5QP7; 5QP8; 5QP9; 5QPA; 5QPB; 5QPC
EC Number
3.6.1.62
Pfam ID
PF05026 ; PF00293
Sequence
METKRVEIPGSVLDDLCSRFILHIPSEERDNAIRVCFQIELAHWFYLDFYMQNTPGLPQC
GIRDFAKAVFSHCPFLLPQGEDVEKVLDEWKEYKMGVPTYGAIILDETLENVLLVQGYLA
KSGWGFPKGKVNKEEAPHDCAAREVFEETGFDIKDYICKDDYIELRINDQLARLYIIPGI
PKDTKFNPKTRREIRNIEWFSIEKLPCHRNDMTPKSKLGLAPNKFFMAIPFIRPLRDWLS
RRFGDSSDSDNGFSSTGSTPAKPTVEKLSRTKFRHSQQLFPDGSPGDQWVKHRQPLQQKP
YNNHSEMSDLLKGKNQSMRGNGRKQYQDSPNQKKRTNGLQPAKQQNSLMKCEKKLHPRKL
QDNFETDAVYDLPSSSEDQLLEHAEGQPVACNGHCKFPFSSRAFLSFKFDHNAIMKILDL
Function
Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs. Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP. Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. Plays a role in replication-dependent histone mRNA degradation. Has higher activity towards mRNAs that lack a poly(A) tail. Has no activity towards a cap structure lacking an RNA moiety. The presence of a N(6)-methyladenosine methylation at the second transcribed position of mRNAs (N(6),2'-O-dimethyladenosine cap; m6A(m)) provides resistance to DCP2-mediated decapping. Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts.
Tissue Specificity Expressed in brain and testis. Not detected in heart (at protein level).
KEGG Pathway
R. degradation (hsa03018 )
Reactome Pathway
mRNA decay by 5' to 3' exoribonuclease (R-HSA-430039 )
Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA (R-HSA-450385 )
Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA (R-HSA-450513 )
KSRP (KHSRP) binds and destabilizes mRNA (R-HSA-450604 )
ATF4 activates genes in response to endoplasmic reticulum stress (R-HSA-380994 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved m7GpppN-mRNA hydrolase (DCP2) increases the response to substance of Arsenic trioxide. [9]
Methotrexate DM2TEOL Approved m7GpppN-mRNA hydrolase (DCP2) affects the response to substance of Methotrexate. [10]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of m7GpppN-mRNA hydrolase (DCP2). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of m7GpppN-mRNA hydrolase (DCP2). [4]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of m7GpppN-mRNA hydrolase (DCP2). [7]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of m7GpppN-mRNA hydrolase (DCP2). [2]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of m7GpppN-mRNA hydrolase (DCP2). [3]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of m7GpppN-mRNA hydrolase (DCP2). [5]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of m7GpppN-mRNA hydrolase (DCP2). [6]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate decreases the expression of m7GpppN-mRNA hydrolase (DCP2). [8]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
4 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
5 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
6 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
7 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
8 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
9 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.
10 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.