General Information of Drug Off-Target (DOT) (ID: OTLKKURG)

DOT Name Oligoribonuclease, mitochondrial (REXO2)
Synonyms EC 3.1.15.-; RNA exonuclease 2 homolog; Small fragment nuclease
Gene Name REXO2
Related Disease
Inflammatory bowel disease ( )
Lung adenocarcinoma ( )
Sporadic pheochromocytoma ( )
UniProt ID
ORN_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6J7Y; 6J7Z; 6J80; 6N6I; 6N6J; 6N6K; 6RCI; 6RCL; 6RCN; 6STY
EC Number
3.1.15.-
Pfam ID
PF00929
Sequence
MLGGSLGSRLLRGVGGSHGRFGARGVREGGAAMAAGESMAQRMVWVDLEMTGLDIEKDQI
IEMACLITDSDLNILAEGPNLIIKQPDELLDSMSDWCKEHHGKSGLTKAVKESTITLQQA
EYEFLSFVRQQTPPGLCPLAGNSVHEDKKFLDKYMPQFMKHLHYRIIDVSTVKELCRRWY
PEEYEFAPKKAASHRALDDISESIKELQFYRNNIFKKKIDEKKRKIIENGENEKTVS
Function
3'-to-5'exoribonuclease that preferentially degrades DNA and RNA oligonucleotides composed of only two nucleotides. Binds and degrades longer oligonucleotides with a lower affinity. Plays dual roles in mitochondria, scavenging nanoRNAs (small RNA oligonucleotides of <5 nucleotides) that are produced by the degradosome and clearing short RNAs that are generated by RNA processing. Essential for correct initiation of mitochondrial transcription, degrading mitochondrial RNA dinucleotides to prevent RNA-primed transcription at non-canonical sites in the mitochondrial genome. Essential for embryonic development; [Isoform 3]: 3'-to-5'exoribonuclease that preferentially degrades DNA and RNA oligonucleotides composed of only two nucleotides.
Tissue Specificity Highly expressed in the heart and at lower levels in the lymph nodes, brain, lung, liver, spleen and thymus.
KEGG Pathway
Ribosome biogenesis in eukaryotes (hsa03008 )
Reactome Pathway
Mitochondrial RNA degradation (R-HSA-9836573 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Inflammatory bowel disease DISGN23E Strong Biomarker [1]
Lung adenocarcinoma DISD51WR Strong Biomarker [2]
Sporadic pheochromocytoma DISQWTMO Limited Autosomal dominant [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Oligoribonuclease, mitochondrial (REXO2). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Oligoribonuclease, mitochondrial (REXO2). [13]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Oligoribonuclease, mitochondrial (REXO2). [5]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Oligoribonuclease, mitochondrial (REXO2). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Oligoribonuclease, mitochondrial (REXO2). [7]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Oligoribonuclease, mitochondrial (REXO2). [8]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Oligoribonuclease, mitochondrial (REXO2). [9]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Oligoribonuclease, mitochondrial (REXO2). [10]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Oligoribonuclease, mitochondrial (REXO2). [11]
Menadione DMSJDTY Approved Menadione affects the expression of Oligoribonuclease, mitochondrial (REXO2). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Oligoribonuclease, mitochondrial (REXO2). [14]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Oligoribonuclease, mitochondrial (REXO2). [15]
Lithium chloride DMHYLQ2 Investigative Lithium chloride increases the expression of Oligoribonuclease, mitochondrial (REXO2). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci.BMC Genomics. 2015 Feb 27;16(1):138. doi: 10.1186/s12864-015-1292-z.
2 Low BIK outside-inside-out interactive inflammation immune-induced transcription-dependent apoptosis through FUT3-PMM2-SQSTM1-SFN-ZNF384.Immunol Res. 2016 Apr;64(2):461-9. doi: 10.1007/s12026-015-8701-x.
3 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
7 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
10 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
11 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
12 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
14 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
15 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
16 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.