General Information of Disease (ID: DISG7641)

Disease Name Obsolete non-syndromic male infertility due to sperm motility disorder
Synonyms non-syndromic male infertility due asthenozoospermia; isolated male infertility due to sperm motility disorder; nonsyndromic male infertility due to sperm motility disorder
Definition
OBSOLETE. Non-syndromic male infertility due to sperm motility disorder is a rare, genetic, non-syndromic male infertility disorder characterized by infertility due to sperm with defects in their cilia/flagella structure, leading to absent motility or reduced forward motility in fresh ejaculate. Reduced semen volume, oligospermia and an increased number of abnormally structured spermatozoa is often present.
Disease Hierarchy
DIS01GPL: Grass pollen hypersensitivity
DISG7641: Obsolete non-syndromic male infertility due to sperm motility disorder

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 1 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
CATSPER1 TT5CISB Supportive Autosomal recessive [1]
------------------------------------------------------------------------------------
This Disease Is Related to 19 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ACTL9 OTDOBD9M Supportive Autosomal recessive [2]
AK7 OTASZDJN Supportive Autosomal recessive [3]
ARMC2 OTMCC01T Supportive Autosomal recessive [4]
CATSPER1 OTPCTSQZ Supportive Autosomal recessive [1]
CFAP251 OT0GKNAU Supportive Autosomal recessive [5]
CFAP43 OT6R8UGG Supportive Autosomal recessive [6]
CFAP44 OT1273MD Supportive Autosomal recessive [6]
CFAP65 OTGB5HVT Supportive Autosomal recessive [7]
CFAP69 OTK73MCA Supportive Autosomal recessive [8]
CFAP70 OTIRTNXU Supportive Autosomal recessive [9]
DNAH1 OTDZ26FJ Supportive Autosomal recessive [10]
DNAH17 OT4G6E70 Supportive Autosomal recessive [11]
FSIP2 OTM9VKX1 Supportive Autosomal recessive [12]
SEPTIN12 OTFUKRXA Supportive Autosomal recessive [13]
SLC26A8 OTNCW8RJ Supportive Autosomal recessive [14]
SPAG17 OTUF58WZ Supportive Autosomal recessive [15]
SPEF2 OTO04K1T Supportive Autosomal recessive [16]
TTC21A OTBJ9JKF Supportive Autosomal recessive [17]
TTC29 OT37KCUL Supportive Autosomal recessive [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 DOT(s)

References

1 Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet. 2009 Apr;84(4):505-10. doi: 10.1016/j.ajhg.2009.03.004. Epub 2009 Apr 2.
2 Homozygous pathogenic variants in ACTL9 cause fertilization failure and male infertility in humans and mice. Am J Hum Genet. 2021 Mar 4;108(3):469-481. doi: 10.1016/j.ajhg.2021.02.004. Epub 2021 Feb 23.
3 Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Genet. 2018 Apr 1;27(7):1196-1211. doi: 10.1093/hmg/ddy034.
4 Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice. Am J Hum Genet. 2019 Feb 7;104(2):331-340. doi: 10.1016/j.ajhg.2018.12.013. Epub 2019 Jan 24.
5 A Homozygous Ancestral SVA-Insertion-Mediated Deletion in WDR66 Induces Multiple Morphological Abnormalities of the Sperm Flagellum and Male Infertility. Am J Hum Genet. 2018 Sep 6;103(3):400-412. doi: 10.1016/j.ajhg.2018.07.014. Epub 2018 Aug 16.
6 Biallelic Mutations in CFAP43 and CFAP44 Cause Male Infertility with Multiple Morphological Abnormalities of the Sperm Flagella. Am J Hum Genet. 2017 Jun 1;100(6):854-864. doi: 10.1016/j.ajhg.2017.04.012. Epub 2017 May 25.
7 Biallelic mutations in CFAP65 lead to severe asthenoteratospermia due to acrosome hypoplasia and flagellum malformations. J Med Genet. 2019 Nov;56(11):750-757. doi: 10.1136/jmedgenet-2019-106031. Epub 2019 Aug 14.
8 Absence of CFAP69 Causes Male Infertility due to Multiple Morphological Abnormalities of the Flagella in Human and Mouse. Am J Hum Genet. 2018 Apr 5;102(4):636-648. doi: 10.1016/j.ajhg.2018.03.007.
9 CFAP70 mutations lead to male infertility due to severe astheno-teratozoospermia. A case report. Hum Reprod. 2019 Oct 2;34(10):2071-2079. doi: 10.1093/humrep/dez166.
10 Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2014 Jan 2;94(1):95-104. doi: 10.1016/j.ajhg.2013.11.017. Epub 2013 Dec 19.
11 Mutations in DNAH17, Encoding a Sperm-Specific Axonemal Outer Dynein Arm Heavy Chain, Cause Isolated Male Infertility Due to Asthenozoospermia. Am J Hum Genet. 2019 Jul 3;105(1):198-212. doi: 10.1016/j.ajhg.2019.04.015. Epub 2019 Jun 6.
12 Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella. Hum Reprod. 2018 Oct 1;33(10):1973-1984. doi: 10.1093/humrep/dey264.
13 SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat. 2012 Apr;33(4):710-9. doi: 10.1002/humu.22028. Epub 2012 Feb 20.
14 Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia. Am J Hum Genet. 2013 May 2;92(5):760-6. doi: 10.1016/j.ajhg.2013.03.016. Epub 2013 Apr 11.
15 A familial study of twins with severe asthenozoospermia identified a homozygous SPAG17 mutation by whole-exome sequencing. Clin Genet. 2018 Feb;93(2):345-349. doi: 10.1111/cge.13059. Epub 2017 Sep 4.
16 Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF). J Med Genet. 2019 Oct;56(10):678-684. doi: 10.1136/jmedgenet-2018-105952. Epub 2019 May 31.
17 Bi-allelic Mutations in TTC21A Induce Asthenoteratospermia in Humans and Mice. Am J Hum Genet. 2019 Apr 4;104(4):738-748. doi: 10.1016/j.ajhg.2019.02.020. Epub 2019 Mar 28.
18 Mutations in TTC29, Encoding an Evolutionarily Conserved Axonemal Protein, Result in Asthenozoospermia and Male Infertility. Am J Hum Genet. 2019 Dec 5;105(6):1148-1167. doi: 10.1016/j.ajhg.2019.10.007. Epub 2019 Nov 14.