General Information of Drug Off-Target (DOT) (ID: OT05710K)

DOT Name Leucine-rich repeat-containing protein 75A (LRRC75A)
Synonyms Leucine-rich repeat-containing protein FAM211A
Gene Name LRRC75A
UniProt ID
LR75A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MGTRQTKGSLAERASPGAAPGPRRERPDFWASLLLRAGDKAGRAGAGMPPYHRRVGMVQE
LLRMVRQGRREEAGTLLQHLRQDLGMESTSLDDVLYRYASFRNLVDPITHDLIISLARYI
HCPKPEGDALGAMEKLCRQLTYHLSPHSQWRRHRGLVKRKPQACLKAVLAGSPPDNTVDL
SGIPLTSRDLERVTSYLQRCGEQVDSVELGFTGLTDDMVLQLLPALSTLPRLTTLALNGN
RLTRAVLRDLTDILKDPSKFPNVTWIDLGNNVDIFSLPQPFLLSLRKRSPKQGHLPTILE
LGEGPGSGEEVREGTVGQEDPGGGPVAPAEDHHEGKETVAAAQT

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Leucine-rich repeat-containing protein 75A (LRRC75A). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Leucine-rich repeat-containing protein 75A (LRRC75A). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Leucine-rich repeat-containing protein 75A (LRRC75A). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Leucine-rich repeat-containing protein 75A (LRRC75A). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Leucine-rich repeat-containing protein 75A (LRRC75A). [6]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Leucine-rich repeat-containing protein 75A (LRRC75A). [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Leucine-rich repeat-containing protein 75A (LRRC75A). [5]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
6 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
7 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.