General Information of Drug Off-Target (DOT) (ID: OT1FHFMK)

DOT Name Solute carrier family 52, riboflavin transporter, member 3 (SLC52A3)
Synonyms Riboflavin transporter 2; hRFT2
Gene Name SLC52A3
Related Disease
Brown-Vialetto-van Laere syndrome 1 ( )
Progressive bulbar palsy ( )
UniProt ID
S52A3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF06237
Sequence
MAFLMHLLVCVFGMGSWVTINGLWVELPLLVMELPEGWYLPSYLTVVIQLANIGPLLVTL
LHHFRPSCLSEVPIIFTLLGVGTVTCIIFAFLWNMTSWVLDGHHSIAFLVLTFFLALVDC
TSSVTFLPFMSRLPTYYLTTFFVGEGLSGLLPALVALAQGSGLTTCVNVTEISDSVPSPV
PTRETDIAQGVPRALVSALPGMEAPLSHLESRYLPAHFSPLVFFLLLSIMMACCLVAFFV
LQRQPRCWEASVEDLLNDQVTLHSIRPREENDLGPAGTVDSSQGQGYLEEKAAPCCPAHL
AFIYTLVAFVNALTNGMLPSVQTYSCLSYGPVAYHLAATLSIVANPLASLVSMFLPNRSL
LFLGVLSVLGTCFGGYNMAMAVMSPCPLLQGHWGGEVLIVASWVLFSGCLSYVKVMLGVV
LRDLSRSALLWCGAAVQLGSLLGALLMFPLVNVLRLFSSADFCNLHCPA
Function
Plasma membrane transporter mediating the uptake by cells of the water soluble vitamin B2/riboflavin that plays a key role in biochemical oxidation-reduction reactions of the carbohydrate, lipid, and amino acid metabolism. Humans are unable to synthesize vitamin B2/riboflavin and must obtain it via intestinal absorption.
Tissue Specificity Predominantly expressed in testis. Highly expressed in small intestine and prostate.
KEGG Pathway
Vitamin digestion and absorption (hsa04977 )
Reactome Pathway
Vitamin B2 (riboflavin) metabolism (R-HSA-196843 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Brown-Vialetto-van Laere syndrome 1 DISFGXWR Definitive Autosomal recessive [1]
Progressive bulbar palsy DIS4SNUB Moderate Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Solute carrier family 52, riboflavin transporter, member 3 (SLC52A3). [3]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Solute carrier family 52, riboflavin transporter, member 3 (SLC52A3). [4]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Solute carrier family 52, riboflavin transporter, member 3 (SLC52A3). [5]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Solute carrier family 52, riboflavin transporter, member 3 (SLC52A3). [5]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Solute carrier family 52, riboflavin transporter, member 3 (SLC52A3). [7]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Solute carrier family 52, riboflavin transporter, member 3 (SLC52A3). [8]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Solute carrier family 52, riboflavin transporter, member 3 (SLC52A3). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Solute carrier family 52, riboflavin transporter, member 3 (SLC52A3). [6]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
5 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
6 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
7 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
8 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
9 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.