General Information of Drug Off-Target (DOT) (ID: OT1NZX84)

DOT Name Coiled-coil domain-containing protein 15 (CCDC15)
Gene Name CCDC15
UniProt ID
CCD15_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MLGSMARKKPRNTSRLPLALNPLKSKDVLAVLAERNEAIVPVGAWVEPASPGSSEIPAYT
SAYLIEEELKEQLRKKQEALKHFQKQVKYRVNQQIRLRKKQQLQKSYERAQKEGSIAMQS
SATHLTSKRTSVFPNNLNVAIGSSRLPPSLMPGDGIEDEENQNELFQQQAQALSETMKQA
RHRLASFKTVIKKKGSVFPDDGRKSFLTREEVLSRKPASTGINTGIRGELPIKVHQGLLA
AVPYQNYMENQELDYEEPDYEESSSLVTDEKGKEDLFGRGQQDQQAIHSEDKNKPFSRVQ
KVKFKNPLFVLMEEEEQKQLHFEGLQDILPEAQDYFLEAQGDLLETQGDLTGIQSVKPDT
QAVEMKVQVTEPEGQAIEPEGQPIKTETQGIMLKAQSIELEEGSIVLKTQDFLPTNQALL
TKNQDVLLKDHCVLPKDQSILLKYQDQDFLPRDQHVLHKDQDILPKYQDQNFLPKDQNFL
SRDQHVLPKDQDILPKYQDQNFLPKDQNFLSRDQHVLPKDQNILPKYQGQDFLPKDQDFL
SRDQHVLPKDWNILPKCQDQDFLPRDQGVLPKDQNILPICQDQDFLPRDQGYLPKDQNIL
PICQDRDFLPRDLHVLSNDQNILPKCQDQDFLPKYQKVHFKEPYSDMTDEKGREDFSLAD
YQCLPPKSQDQDDIKNQQPASFMREERVREELPLDYHQYVVPKIQDQDSPREQNKHIKLP
SSFEKWEIARGNTPGVPLAYDRYQSGLSTEFQAPLAFQSDVDKEEDKKERQKQYLRHRRL
FMDIEREQVKEQQRQKEQKKKIEKIKKKREQECYAAEQRILRMNFHEDPYSGEKLSEILA
QLQLQEIKGTREKQQREKEYLRYVEALRAQIQEKMQLYNITLPPLCCCGPDFWDAHPDTC
ANNCIFYKNHRAYTRALHSFINSCDVPGGNSTLRVAIHNFASAHRRTLKNL

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [2]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [3]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [6]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [7]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [6]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [8]
Cytarabine DMZD5QR Approved Cytarabine increases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [9]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [10]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [12]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [16]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Coiled-coil domain-containing protein 15 (CCDC15). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)

References

1 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
4 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
7 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
8 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
9 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
12 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
13 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
14 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
17 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.