General Information of Drug Off-Target (DOT) (ID: OT1Z52Q7)

DOT Name UPF0688 protein C1orf174 (C1ORF174)
Gene Name C1ORF174
UniProt ID
CA174_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15772
Sequence
MRSRKLTGAVRSSARLKARSCSAARLASAQEVAGSTSAKTACLTSSSHKATDTRTSKKFK
CDKGHLVKSELQKLVPKNDSASLPKVTPETPCENEFAEGSALLPGSEAGVSVQQGAASLP
LGGCRVVSDSRLAKTRDGLSVPKHSAGSGAEESNSSSTVQKQNEPGLQTEDVQKPPLQMD
NSVFLDDDSNQPMPVSRFFGNVELMQDLPPASSSCPSMSRREFRKMHFRAKDDDDDDDDD
AEM

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of UPF0688 protein C1orf174 (C1ORF174). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of UPF0688 protein C1orf174 (C1ORF174). [2]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of UPF0688 protein C1orf174 (C1ORF174). [8]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of UPF0688 protein C1orf174 (C1ORF174). [8]
------------------------------------------------------------------------------------
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Temozolomide DMKECZD Approved Temozolomide increases the expression of UPF0688 protein C1orf174 (C1ORF174). [3]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of UPF0688 protein C1orf174 (C1ORF174). [4]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of UPF0688 protein C1orf174 (C1ORF174). [5]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of UPF0688 protein C1orf174 (C1ORF174). [6]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of UPF0688 protein C1orf174 (C1ORF174). [7]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of UPF0688 protein C1orf174 (C1ORF174). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
3 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
4 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
5 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
6 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
7 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
8 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
9 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.