General Information of Drug Off-Target (DOT) (ID: OT2IU0E9)

DOT Name Fibronectin type III domain-containing protein 11 (FNDC11)
Gene Name FNDC11
UniProt ID
FND11_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF17744 ; PF20996
Sequence
MSTHVAGLGLDKMKLGNPQSFLDQEEADDQQLLEPEAWKTYTERRNALREFLTSDLSPHL
LKRHHARMQLLRKCSYYIEVLPKHLALGDQNPLVLPSALFQLIDPWKFQRMKKVGTAQTK
IQLLLLGDLLEQLDHGRAELDALLRSPDPRPFLADWALVERRLADVSAVMDSFLTMMVPG
RLHVKHRLVSDVSATKIPHIWLMLSTKMPVVFDRKASAAHQDWARLRWFVTIQPATSEQY
ELRFRLLDPRTQQECAQCGVIPVAACTFDVRNLLPNRSYKFTIKRAETSTLVYEPWRDSL
TLHTKPEPLEGPALSHSV

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Fibronectin type III domain-containing protein 11 (FNDC11). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Fibronectin type III domain-containing protein 11 (FNDC11). [5]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Fibronectin type III domain-containing protein 11 (FNDC11). [6]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Fibronectin type III domain-containing protein 11 (FNDC11). [2]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Fibronectin type III domain-containing protein 11 (FNDC11). [3]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Fibronectin type III domain-containing protein 11 (FNDC11). [4]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Fibronectin type III domain-containing protein 11 (FNDC11). [7]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
3 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
4 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
5 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
6 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
7 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.