General Information of Drug Off-Target (DOT) (ID: OT3AA61T)

DOT Name Ankyrin repeat and SOCS box protein 9 (ASB9)
Synonyms ASB-9
Gene Name ASB9
UniProt ID
ASB9_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3D9H; 3ZKJ; 3ZNG; 6V9H
Pfam ID
PF12796 ; PF07525
Sequence
MDGKQGGMDGSKPAGPRDFPGIRLLSNPLMGDAVSDWSPMHEAAIHGHQLSLRNLISQGW
AVNIITADHVSPLHEACLGGHLSCVKILLKHGAQVNGVTADWHTPLFNACVSGSWDCVNL
LLQHGASVQPESDLASPIHEAARRGHVECVNSLIAYGGNIDHKISHLGTPLYLACENQQR
ACVKKLLESGADVNQGKGQDSPLHAVARTASEELACLLMDFGADTQAKNAEGKRPVELVP
PESPLAQLFLEREGPPSLMQLCRLRIRKCFGIQQHHKITKLVLPEDLKQFLLHL
Function
Substrate-recognition component of a SCF-like ECS (Elongin-Cullin-SOCS-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Recognizes at least two forms of creatine kinase, CKB and CKMT1A.
Tissue Specificity Predominantly expressed in testis, kidney, and liver.
Reactome Pathway
Antigen processing (R-HSA-983168 )
Neddylation (R-HSA-8951664 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [8]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [9]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [10]
Beta-carotene DM0RXBT Approved Beta-carotene increases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [11]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [16]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Ankyrin repeat and SOCS box protein 9 (ASB9). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Ankyrin repeat and SOCS box protein 9 (ASB9). [13]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
11 Beta-carotene and apocarotenals promote retinoid signaling in BEAS-2B human bronchioepithelial cells. Arch Biochem Biophys. 2006 Nov 1;455(1):48-60.
12 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
14 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
17 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.