General Information of Drug Off-Target (DOT) (ID: OT3B517W)

DOT Name Myotubularin (MTM1)
Synonyms Phosphatidylinositol-3,5-bisphosphate 3-phosphatase; EC 3.1.3.95; Phosphatidylinositol-3-phosphate phosphatase; EC 3.1.3.64
Gene Name MTM1
Related Disease
X-linked myotubular myopathy ( )
UniProt ID
MTM1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.1.3.64; 3.1.3.95
Pfam ID
PF02893 ; PF06602
Sequence
MASASTSKYNSHSLENESIKRTSRDGVNRDLTEAVPRLPGETLITDKEVIYICPFNGPIK
GRVYITNYRLYLRSLETDSSLILDVPLGVISRIEKMGGATSRGENSYGLDITCKDMRNLR
FALKQEGHSRRDMFEILTRYAFPLAHSLPLFAFLNEEKFNVDGWTVYNPVEEYRRQGLPN
HHWRITFINKCYELCDTYPALLVVPYRASDDDLRRVATFRSRNRIPVLSWIHPENKTVIV
RCSQPLVGMSGKRNKDDEKYLDVIRETNKQISKLTIYDARPSVNAVANKATGGGYESDDA
YHNAELFFLDIHNIHVMRESLKKVKDIVYPNVEESHWLSSLESTHWLEHIKLVLTGAIQV
ADKVSSGKSSVLVHCSDGWDRTAQLTSLAMLMLDSFYRSIEGFEILVQKEWISFGHKFAS
RIGHGDKNHTDADRSPIFLQFIDCVWQMSKQFPTAFEFNEQFLIIILDHLYSCRFGTFLF
NCESARERQKVTERTVSLWSLINSNKEKFKNPFYTKEINRVLYPVASMRHLELWVNYYIR
WNPRIKQQQPNPVEQRYMELLALRDEYIKRLEELQLANSAKLSDPPTSPSSPSQMMPHVQ
THF
Function
Lipid phosphatase which dephosphorylates phosphatidylinositol 3-monophosphate (PI3P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). Has also been shown to dephosphorylate phosphotyrosine- and phosphoserine-containing peptides. Negatively regulates EGFR degradation through regulation of EGFR trafficking from the late endosome to the lysosome. Plays a role in vacuolar formation and morphology. Regulates desmin intermediate filament assembly and architecture. Plays a role in mitochondrial morphology and positioning. Required for skeletal muscle maintenance but not for myogenesis. In skeletal muscles, stabilizes MTMR12 protein levels.
KEGG Pathway
Inositol phosphate metabolism (hsa00562 )
Metabolic pathways (hsa01100 )
Phosphatidylinositol sig.ling system (hsa04070 )
Reactome Pathway
Synthesis of PIPs at the early endosome membrane (R-HSA-1660516 )
Synthesis of PIPs at the late endosome membrane (R-HSA-1660517 )
Synthesis of PIPs at the plasma membrane (R-HSA-1660499 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
X-linked myotubular myopathy DISJ95GS Definitive X-linked [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Myotubularin (MTM1). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Myotubularin (MTM1). [6]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Myotubularin (MTM1). [8]
------------------------------------------------------------------------------------
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Myotubularin (MTM1). [3]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Myotubularin (MTM1). [4]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Myotubularin (MTM1). [5]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Myotubularin (MTM1). [7]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Myotubularin (MTM1). [9]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Myotubularin (MTM1). [10]
Manganese DMKT129 Investigative Manganese decreases the expression of Myotubularin (MTM1). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
5 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
6 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
7 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
8 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
11 Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology. 2007 May;28(3):478-89.