General Information of Drug Off-Target (DOT) (ID: OT3H9W7X)

DOT Name Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21)
Synonyms TIM21-like protein, mitochondrial
Gene Name TIMM21
UniProt ID
TIM21_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF08294
Sequence
MICTFLRAVQYTEKLHRSSAKRLLLPYIVLNKACLKTEPSLRCGLQYQKKTLRPRCILGV
TQKTIWTQGPSPRKAKEDGSKQVSVHRSQRGGTAVPTSQKVKEAGRDFTYLIVVLFGISI
TGGLFYTIFKELFSSSSPSKIYGRALEKCRSHPEVIGVFGESVKGYGEVTRRGRRQHVRF
TEYVKDGLKHTCVKFYIEGSEPGKQGTVYAQVKENPGSGEYDFRYIFVEIESYPRRTIII
EDNRSQDD
Function
Participates in the translocation of transit peptide-containing proteins across the mitochondrial inner membrane. Also required for assembly of mitochondrial respiratory chain complex I and complex IV as component of the MITRAC (mitochondrial translation regulation assembly intermediate of cytochrome c oxidase complex) complex. Probably shuttles between the presequence translocase and respiratory-chain assembly intermediates in a process that promotes incorporation of early nuclear-encoded subunits into these complexes.
Reactome Pathway
Mitochondrial protein import (R-HSA-1268020 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [1]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [4]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [6]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [6]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [7]
GSK2110183 DMZHB37 Phase 2 GSK2110183 decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [8]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [9]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [11]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [12]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [13]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Mitochondrial import inner membrane translocase subunit Tim21 (TIMM21). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)

References

1 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
2 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
6 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
7 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
8 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
9 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
10 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
11 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
12 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
14 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.