General Information of Drug Off-Target (DOT) (ID: OT3MRMM9)

DOT Name Kynurenine 3-monooxygenase (KMO)
Synonyms EC 1.14.13.9; Kynurenine 3-hydroxylase
Gene Name KMO
Related Disease
Pellagra ( )
UniProt ID
KMO_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5X68
EC Number
1.14.13.9
Pfam ID
PF01494
Sequence
MDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSH
RGRQALKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLT
AAEKYPNVKMHFNHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKK
PRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMP
FEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCV
LLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLS
MYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKK
VINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQI
SNLISR
Function
Catalyzes the hydroxylation of L-kynurenine (L-Kyn) to form 3-hydroxy-L-kynurenine (L-3OHKyn). Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal targeting, synaptogenesis and apoptosis during brain development. Quinolinic acid may also affect NMDA receptor signaling in pancreatic beta cells, osteoblasts, myocardial cells, and the gastrointestinal tract (Probable).
Tissue Specificity Highest levels in placenta and liver. Detectable in kidney.
KEGG Pathway
Tryptophan metabolism (hsa00380 )
Metabolic pathways (hsa01100 )
Biosynthesis of cofactors (hsa01240 )
Reactome Pathway
Tryptophan catabolism (R-HSA-71240 )
BioCyc Pathway
MetaCyc:HS04082-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Pellagra DISAVNWB No Known Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cytarabine DMZD5QR Approved Kynurenine 3-monooxygenase (KMO) increases the response to substance of Cytarabine. [12]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Kynurenine 3-monooxygenase (KMO). [2]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Kynurenine 3-monooxygenase (KMO). [11]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Kynurenine 3-monooxygenase (KMO). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Kynurenine 3-monooxygenase (KMO). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Kynurenine 3-monooxygenase (KMO). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Kynurenine 3-monooxygenase (KMO). [6]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Kynurenine 3-monooxygenase (KMO). [7]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of Kynurenine 3-monooxygenase (KMO). [8]
Bosentan DMIOGBU Approved Bosentan affects the expression of Kynurenine 3-monooxygenase (KMO). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Kynurenine 3-monooxygenase (KMO). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
7 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
8 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
9 Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch Toxicol. 2018 Jun;92(6):1939-1952.
10 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
11 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
12 Genome-wide local ancestry approach identifies genes and variants associated with chemotherapeutic susceptibility in African Americans. PLoS One. 2011;6(7):e21920. doi: 10.1371/journal.pone.0021920. Epub 2011 Jul 6.