General Information of Drug Off-Target (DOT) (ID: OT5WDPXB)

DOT Name Tyrosine-protein phosphatase non-receptor type 23 (PTPN23)
Synonyms EC 3.1.3.48; His domain-containing protein tyrosine phosphatase; HD-PTP; Protein tyrosine phosphatase TD14; PTP-TD14
Gene Name PTPN23
Related Disease
Advanced cancer ( )
Breast neoplasm ( )
Germ cell tumor ( )
Intellectual disability ( )
Myopia ( )
Neurodevelopmental disorder and structural brain anomalies with or without seizures and spasticity ( )
Non-insulin dependent diabetes ( )
Sarcoidosis ( )
Neoplasm ( )
Breast cancer ( )
Breast carcinoma ( )
UniProt ID
PTN23_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3RAU; 5CRU; 5CRV; 5LM1; 5LM2; 5MJY; 5MJZ; 5MK0; 5MK1; 5MK2; 5MK3
EC Number
3.1.3.48
Pfam ID
PF13949 ; PF03097 ; PF00102
Sequence
MEAVPRMPMIWLDLKEAGDFHFQPAVKKFVLKNYGENPEAYNEELKKLELLRQNAVRVPR
DFEGCSVLRKYLGQLHYLQSRVPMGSGQEAAVPVTWTEIFSGKSVAHEDIKYEQACILYN
LGALHSMLGAMDKRVSEEGMKVSCTHFQCAAGAFAYLREHFPQAYSVDMSRQILTLNVNL
MLGQAQECLLEKSMLDNRKSFLVARISAQVVDYYKEACRALENPDTASLLGRIQKDWKKL
VQMKIYYFAAVAHLHMGKQAEEQQKFGERVAYFQSALDKLNEAIKLAKGQPDTVQDALRF
TMDVIGGKYNSAKKDNDFIYHEAVPALDTLQPVKGAPLVKPLPVNPTDPAVTGPDIFAKL
VPMAAHEASSLYSEEKAKLLREMMAKIEDKNEVLDQFMDSMQLDPETVDNLDAYSHIPPQ
LMEKCAALSVRPDTVRNLVQSMQVLSGVFTDVEASLKDIRDLLEEDELLEQKFQEAVGQA
GAISITSKAELAEVRREWAKYMEVHEKASFTNSELHRAMNLHVGNLRLLSGPLDQVRAAL
PTPALSPEDKAVLQNLKRILAKVQEMRDQRVSLEQQLRELIQKDDITASLVTTDHSEMKK
LFEEQLKKYDQLKVYLEQNLAAQDRVLCALTEANVQYAAVRRVLSDLDQKWNSTLQTLVA
SYEAYEDLMKKSQEGRDFYADLESKVAALLERTQSTCQAREAARQQLLDRELKKKPPPRP
TAPKPLLPRREESEAVEAGDPPEELRSLPPDMVAGPRLPDTFLGSATPLHFPPSPFPSST
GPGPHYLSGPLPPGTYSGPTQLIQPRAPGPHAMPVAPGPALYPAPAYTPELGLVPRSSPQ
HGVVSSPYVGVGPAPPVAGLPSAPPPQFSGPELAMAVRPATTTVDSIQAPIPSHTAPRPN
PTPAPPPPCFPVPPPQPLPTPYTYPAGAKQPIPAQHHFSSGIPAGFPAPRIGPQPQPHPQ
PHPSQAFGPQPPQQPLPLQHPHLFPPQAPGLLPPQSPYPYAPQPGVLGQPPPPLHTQLYP
GPAQDPLPAHSGALPFPSPGPPQPPHPPLAYGPAPSTRPMGPQAAPLTIRGPSSAGQSTP
SPHLVPSPAPSPGPGPVPPRPPAAEPPPCLRRGAAAADLLSSSPESQHGGTQSPGGGQPL
LQPTKVDAAEGRRPQALRLIERDPYEHPERLRQLQQELEAFRGQLGDVGALDTVWRELQD
AQEHDARGRSIAIARCYSLKNRHQDVMPYDSNRVVLRSGKDDYINASCVEGLSPYCPPLV
ATQAPLPGTAADFWLMVHEQKVSVIVMLVSEAEMEKQKVARYFPTERGQPMVHGALSLAL
SSVRSTETHVERVLSLQFRDQSLKRSLVHLHFPTWPELGLPDSPSNLLRFIQEVHAHYLH
QRPLHTPIIVHCSSGVGRTGAFALLYAAVQEVEAGNGIPELPQLVRRMRQQRKHMLQEKL
HLRFCYEAVVRHVEQVLQRHGVPPPCKPLASASISQKNHLPQDSQDLVLGGDVPISSIQA
TIAKLSIRPPGGLESPVASLPGPAEPPGLPPASLPESTPIPSSSPPPLSSPLPEAPQPKE
EPPVPEAPSSGPPSSSLELLASLTPEAFSLDSSLRGKQRMSKHNFLQAHNGQGLRATRPS
DDPLSLLDPLWTLNKT
Function
Plays a role in sorting of endocytic ubiquitinated cargos into multivesicular bodies (MVBs) via its interaction with the ESCRT-I complex (endosomal sorting complex required for transport I), and possibly also other ESCRT complexes. May act as a negative regulator of Ras-mediated mitogenic activity. Plays a role in ciliogenesis.
Reactome Pathway
Interleukin-37 signaling (R-HSA-9008059 )

Molecular Interaction Atlas (MIA) of This DOT

11 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Breast neoplasm DISNGJLM Strong Biomarker [2]
Germ cell tumor DIS62070 Strong Biomarker [3]
Intellectual disability DISMBNXP Strong Biomarker [4]
Myopia DISK5S60 Strong Altered Expression [5]
Neurodevelopmental disorder and structural brain anomalies with or without seizures and spasticity DISYBBKP Strong Autosomal recessive [6]
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [7]
Sarcoidosis DISE5B8Z Strong Biomarker [8]
Neoplasm DISZKGEW moderate Biomarker [2]
Breast cancer DIS7DPX1 Limited Altered Expression [2]
Breast carcinoma DIS2UE88 Limited Biomarker [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Tyrosine-protein phosphatase non-receptor type 23 (PTPN23). [9]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Tyrosine-protein phosphatase non-receptor type 23 (PTPN23). [10]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Tyrosine-protein phosphatase non-receptor type 23 (PTPN23). [11]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Tyrosine-protein phosphatase non-receptor type 23 (PTPN23). [12]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tyrosine-protein phosphatase non-receptor type 23 (PTPN23). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Tyrosine-protein phosphatase non-receptor type 23 (PTPN23). [15]
UNC0379 DMD1E4J Preclinical UNC0379 decreases the expression of Tyrosine-protein phosphatase non-receptor type 23 (PTPN23). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Tyrosine-protein phosphatase non-receptor type 23 (PTPN23). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Tyrosine-protein phosphatase non-receptor type 23 (PTPN23). [14]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Tyrosine-protein phosphatase non-receptor type 23 (PTPN23). [16]
------------------------------------------------------------------------------------

References

1 Role of ESCRT component HD-PTP/PTPN23 in cancer.Biochem Soc Trans. 2017 Jun 15;45(3):845-854. doi: 10.1042/BST20160332.
2 Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase.Genes Dev. 2017 Oct 1;31(19):1939-1957. doi: 10.1101/gad.304261.117. Epub 2017 Oct 24.
3 Tumor-suppressive function of protein-tyrosine phosphatase non-receptor type 23 in testicular germ cell tumors is lost upon overexpression of miR142-3p microRNA.J Biol Chem. 2013 Aug 16;288(33):23990-9. doi: 10.1074/jbc.M113.478891. Epub 2013 Jul 10.
4 Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 2015 Jan 13;10(2):148-61. doi: 10.1016/j.celrep.2014.12.015. Epub 2014 Dec 31.
5 Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release.Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1617-1622. doi: 10.1073/pnas.1716801115. Epub 2018 Jan 29.
6 [An increase in health needs and the role of nursing. Re-evaluation of primary nursing - substantial expansion of the role of nurses]. Kango Tenbo. 1978 Feb;3(2):122-6.
7 Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.Nat Genet. 2018 Apr;50(4):559-571. doi: 10.1038/s41588-018-0084-1. Epub 2018 Apr 9.
8 Search for sarcoidosis candidate genes by integration of data from genomic, transcriptomic and proteomic studies.Med Sci Monit. 2009 Dec;15(12):SR22-8.
9 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
10 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
11 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
12 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
13 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
14 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
17 Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma. Cancer Cell. 2017 Jan 9;31(1):50-63.
18 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.