General Information of Drug Off-Target (DOT) (ID: OT658H5A)

DOT Name UPF0547 protein C16orf87 (C16ORF87)
Gene Name C16ORF87
UniProt ID
CP087_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF10571
Sequence
MSATRAKKVKMATKSCPECDQQVPVACKSCPCGYIFISRKLLNAKHSEKSPPSTENKHEA
KRRRTERVRREKINSTVNKDLENRKRSRSNSHSDHIRRGRGRPKSASAKKHEEEREKQEK
EIDIYANLSDEKAFVFSVALAEINRKIINQRLIL

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of UPF0547 protein C16orf87 (C16ORF87). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of UPF0547 protein C16orf87 (C16ORF87). [2]
Quercetin DM3NC4M Approved Quercetin decreases the expression of UPF0547 protein C16orf87 (C16ORF87). [4]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of UPF0547 protein C16orf87 (C16ORF87). [5]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of UPF0547 protein C16orf87 (C16ORF87). [6]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of UPF0547 protein C16orf87 (C16ORF87). [7]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of UPF0547 protein C16orf87 (C16ORF87). [8]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of UPF0547 protein C16orf87 (C16ORF87). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of UPF0547 protein C16orf87 (C16ORF87). [3]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of UPF0547 protein C16orf87 (C16ORF87). [10]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
4 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
5 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
6 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
7 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
8 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
9 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
10 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.