General Information of Drug Off-Target (DOT) (ID: OT6GT2K8)

DOT Name Phenylalanine-4-hydroxylase (PAH)
Synonyms PAH; EC 1.14.16.1; Phe-4-monooxygenase
Gene Name PAH
Related Disease
Phenylketonuria ( )
Classic phenylketonuria ( )
Maternal phenylketonuria ( )
Mild hyperphenylalaninemia ( )
Mild phenylketonuria ( )
Tetrahydrobiopterin-responsive hyperphenylalaninemia/phenylketonuria ( )
UniProt ID
PH4H_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1DMW; 1J8T; 1J8U; 1KW0; 1LRM; 1MMK; 1MMT; 1PAH; 1TDW; 1TG2; 2PAH; 3PAH; 4ANP; 4PAH; 5FII; 5PAH; 6HPO; 6HYC; 6N1K; 6PAH
EC Number
1.14.16.1
Pfam ID
PF01842 ; PF00351
Sequence
MSTAVLENPGLGRKLSDFGQETSYIEDNCNQNGAISLIFSLKEEVGALAKVLRLFEENDV
NLTHIESRPSRLKKDEYEFFTHLDKRSLPALTNIIKILRHDIGATVHELSRDKKKDTVPW
FPRTIQELDRFANQILSYGAELDADHPGFKDPVYRARRKQFADIAYNYRHGQPIPRVEYM
EEEKKTWGTVFKTLKSLYKTHACYEYNHIFPLLEKYCGFHEDNIPQLEDVSQFLQTCTGF
RLRPVAGLLSSRDFLGGLAFRVFHCTQYIRHGSKPMYTPEPDICHELLGHVPLFSDRSFA
QFSQEIGLASLGAPDEYIEKLATIYWFTVEFGLCKQGDSIKAYGAGLLSSFGELQYCLSE
KPKLLPLELEKTAIQNYTVTEFQPLYYVAESFNDAKEKVRNFAATIPRPFSVRYDPYTQR
IEVLDNTQQLKILADSINSEIGILCSALQKIK
Function Catalyzes the hydroxylation of L-phenylalanine to L-tyrosine.
KEGG Pathway
Phenylalanine metabolism (hsa00360 )
Phenylalanine, tyrosine and tryptophan biosynthesis (hsa00400 )
Folate biosynthesis (hsa00790 )
Metabolic pathways (hsa01100 )
Biosynthesis of amino acids (hsa01230 )
Reactome Pathway
Phenylalanine metabolism (R-HSA-8964208 )
Phenylketonuria (R-HSA-2160456 )
BioCyc Pathway
MetaCyc:HS10374-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

6 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Phenylketonuria DISCU56J Definitive Autosomal recessive [1]
Classic phenylketonuria DISLU64N Supportive Autosomal recessive [2]
Maternal phenylketonuria DISAVNUV Supportive Autosomal recessive [3]
Mild hyperphenylalaninemia DIS9NTZ6 Supportive Autosomal recessive [2]
Mild phenylketonuria DISS326Y Supportive Autosomal recessive [2]
Tetrahydrobiopterin-responsive hyperphenylalaninemia/phenylketonuria DISHK5Y6 Supportive Autosomal recessive [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Phenylalanine-4-hydroxylase (PAH). [5]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Phenylalanine-4-hydroxylase (PAH). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Phenylalanine-4-hydroxylase (PAH). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Phenylalanine-4-hydroxylase (PAH). [8]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Phenylalanine-4-hydroxylase (PAH). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Phenylalanine-4-hydroxylase (PAH). [9]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Phenylalanine-4-hydroxylase (PAH). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Phenylalanine-4-hydroxylase (PAH). [11]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Phenylalanine-4-hydroxylase (PAH). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Phenylalanine-4-hydroxylase (PAH). [15]
KOJIC ACID DMP84CS Investigative KOJIC ACID decreases the expression of Phenylalanine-4-hydroxylase (PAH). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Phenylalanine-4-hydroxylase (PAH). [13]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Phenylalanine-4-hydroxylase (PAH). [14]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Phenylalanine Hydroxylase Deficiency. 2000 Jan 10 [updated 2017 Jan 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
3 Maternal phenylketonuria syndrome in cousins caused by mild, unrecognized phenylketonuria in their mothers homozygous for the phenylalanine hydroxylase Arg-261-Gln mutation. Eur J Pediatr. 1991 May;150(7):493-7. doi: 10.1007/BF01958431.
4 Two novel genetic lesions and a common BH4-responsive mutation of the PAH gene in Italian patients with hyperphenylalaninemia. Mol Genet Metab. 2002 Nov;77(3):260-6. doi: 10.1016/s1096-7192(02)00166-x.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
14 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
15 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
16 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.