General Information of Drug Off-Target (DOT) (ID: OT77CFJ6)

DOT Name Pantothenate kinase 3 (PANK3)
Synonyms hPanK3; EC 2.7.1.33; Pantothenic acid kinase 3
Gene Name PANK3
UniProt ID
PANK3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2I7P; 3MK6; 3SMS; 5KPR; 5KPT; 5KPZ; 5KQ8; 5KQD; 6B3V; 6PE6; 6X4J; 6X4K; 6X4L; 7UE3; 7UE4; 7UE5; 7UE6; 7UE7; 7UE8; 7UEO; 7UEP; 7UEQ; 7UER; 7UES; 7UET; 7UEU; 7UEV; 7UEX; 7UEY
EC Number
2.7.1.33
Pfam ID
PF03630
Sequence
MKIKDAKKPSFPWFGMDIGGTLVKLSYFEPIDITAEEEQEEVESLKSIRKYLTSNVAYGS
TGIRDVHLELKDLTLFGRRGNLHFIRFPTQDLPTFIQMGRDKNFSTLQTVLCATGGGAYK
FEKDFRTIGNLHLHKLDELDCLVKGLLYIDSVSFNGQAECYYFANASEPERCQKMPFNLD
DPYPLLVVNIGSGVSILAVHSKDNYKRVTGTSLGGGTFLGLCSLLTGCESFEEALEMASK
GDSTQADKLVRDIYGGDYERFGLPGWAVASSFGNMIYKEKRESVSKEDLARATLVTITNN
IGSVARMCAVNEKINRVVFVGNFLRVNTLSMKLLAYALDYWSKGQLKALFLEHEGYFGAV
GALLGLPNFS
Function Catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis.
Tissue Specificity Highly expressed in the liver.
KEGG Pathway
Pantothe.te and CoA biosynthesis (hsa00770 )
Metabolic pathways (hsa01100 )
Biosynthesis of cofactors (hsa01240 )
Reactome Pathway
Coenzyme A biosynthesis (R-HSA-196783 )
BioCyc Pathway
MetaCyc:HS04372-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Pantothenate kinase 3 (PANK3). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Pantothenate kinase 3 (PANK3). [12]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Pantothenate kinase 3 (PANK3). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Pantothenate kinase 3 (PANK3). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Pantothenate kinase 3 (PANK3). [4]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Pantothenate kinase 3 (PANK3). [5]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Pantothenate kinase 3 (PANK3). [6]
Nicotine DMWX5CO Approved Nicotine increases the expression of Pantothenate kinase 3 (PANK3). [7]
Azacitidine DMTA5OE Approved Azacitidine decreases the expression of Pantothenate kinase 3 (PANK3). [8]
Fluoxetine DM3PD2C Approved Fluoxetine increases the expression of Pantothenate kinase 3 (PANK3). [9]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Pantothenate kinase 3 (PANK3). [10]
Isoflavone DM7U58J Phase 4 Isoflavone increases the expression of Pantothenate kinase 3 (PANK3). [11]
Tamibarotene DM3G74J Phase 3 Tamibarotene affects the expression of Pantothenate kinase 3 (PANK3). [3]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Pantothenate kinase 3 (PANK3). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Pantothenate kinase 3 (PANK3). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Pantothenate kinase 3 (PANK3). [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Pantothenate kinase 3 (PANK3). [16]
Nickel chloride DMI12Y8 Investigative Nickel chloride decreases the expression of Pantothenate kinase 3 (PANK3). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
6 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
7 Nicotinic modulation of gene expression in SH-SY5Y neuroblastoma cells. Brain Res. 2006 Oct 20;1116(1):39-49.
8 The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009 Jun;23(6):1019-28.
9 Screening autism-associated environmental factors in differentiating human neural progenitors with fractional factorial design-based transcriptomics. Sci Rep. 2023 Jun 29;13(1):10519. doi: 10.1038/s41598-023-37488-0.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Soy isoflavones exert differential effects on androgen responsive genes in LNCaP human prostate cancer cells. J Nutr. 2007 Apr;137(4):964-72.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
15 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
16 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
17 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.