General Information of Drug Off-Target (DOT) (ID: OT7XETW4)

DOT Name 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1)
Synonyms EC 4.1.3.16; Dihydrodipicolinate synthase-like; DHDPS-like protein; Probable 2-keto-4-hydroxyglutarate aldolase; Probable KHG-aldolase; Protein 569272
Gene Name HOGA1
Related Disease
Chronic renal failure ( )
End-stage renal disease ( )
Primary hyperoxaluria type 3 ( )
Nephrolithiasis, calcium oxalate ( )
Primary hyperoxaluria ( )
Cholestasis ( )
UniProt ID
HOGA1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3S5N; 3S5O
EC Number
4.1.3.16
Pfam ID
PF00701
Sequence
MLGPQVWSSVRQGLSRSLSRNVGVWASGEGKKVDIAGIYPPVTTPFTATAEVDYGKLEEN
LHKLGTFPFRGFVVQGSNGEFPFLTSSERLEVVSRVRQAMPKNRLLLAGSGCESTQATVE
MTVSMAQVGADAAMVVTPCYYRGRMSSAALIHHYTKVADLSPIPVVLYSVPANTGLDLPV
DAVVTLSQHPNIVGMKDSGGDVTRIGLIVHKTRKQDFQVLAGSAGFLMASYALGAVGGVC
ALANVLGAQVCQLERLCCTGQWEDAQKLQHRLIEPNAAVTRRFGIPGLKKIMDWFGYYGG
PCRAPLQELSPAEEEALRMDFTSNGWL
Function Catalyzes the final step in the metabolic pathway of hydroxyproline.
KEGG Pathway
Arginine and proline metabolism (hsa00330 )
Glyoxylate and dicarboxylate metabolism (hsa00630 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Glyoxylate metabolism and glycine degradation (R-HSA-389661 )
BioCyc Pathway
MetaCyc:G66-31234-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

6 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Chronic renal failure DISGG7K6 Definitive Genetic Variation [1]
End-stage renal disease DISXA7GG Definitive Genetic Variation [1]
Primary hyperoxaluria type 3 DISUMMRM Definitive Autosomal recessive [2]
Nephrolithiasis, calcium oxalate DIS5J79C Strong Altered Expression [3]
Primary hyperoxaluria DIS0L16N Strong Genetic Variation [1]
Cholestasis DISDJJWE Limited Biomarker [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [5]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [7]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [8]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [9]
Fenofibrate DMFKXDY Approved Fenofibrate decreases the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [9]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [10]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [11]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [15]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of 4-hydroxy-2-oxoglutarate aldolase, mitochondrial (HOGA1). [12]
------------------------------------------------------------------------------------

References

1 Targeting kidney inflammation as a new therapy for primary hyperoxaluria?.Nephrol Dial Transplant. 2019 Jun 1;34(6):908-914. doi: 10.1093/ndt/gfy239.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis.Clin J Am Soc Nephrol. 2011 Sep;6(9):2289-95. doi: 10.2215/CJN.02760311.
4 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
5 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
9 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
15 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
16 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.