General Information of Drug Off-Target (DOT) (ID: OT9FAX7A)

DOT Name Small integral membrane protein 13 (SMIM13)
Gene Name SMIM13
UniProt ID
SIM13_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15938
Sequence
MWHSVGLTLLVFVATLLIVLLLMVCGWYFVWHLFLSKFKFLRELVGDTGSQEGDHEPSGS
ETEEDTSSSPHRIRSARQRRAPADEGHRPLT

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Small integral membrane protein 13 (SMIM13). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Small integral membrane protein 13 (SMIM13). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Small integral membrane protein 13 (SMIM13). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Small integral membrane protein 13 (SMIM13). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Small integral membrane protein 13 (SMIM13). [5]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Small integral membrane protein 13 (SMIM13). [6]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Small integral membrane protein 13 (SMIM13). [7]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Small integral membrane protein 13 (SMIM13). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Small integral membrane protein 13 (SMIM13). [8]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
8 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.