General Information of Drug Off-Target (DOT) (ID: OTBOQE6N)

DOT Name Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9)
Synonyms Acyl-CoA thioesterase 9; EC 3.1.2.-; Acyl-CoA thioester hydrolase 9
Gene Name ACOT9
Related Disease
Intellectual disability ( )
UniProt ID
ACOT9_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.1.2.-
Sequence
MRRAALRLCALGKGQLTPGRGLTQGPQNPKKQGIFHIHEVRDKLREIVGASTNWRDHVKA
MEERKLLHSFLAKSQDGLPPRRMKDSYIEVLLPLGSEPELREKYLTVQNTVRFGRILEDL
DSLGVLICYMHNKIHSAKMSPLSIVTALVDKIDMCKKSLSPEQDIKFSGHVSWVGKTSME
VKMQMFQLHGDEFCPVLDATFVMVARDSENKGPAFVNPLIPESPEEEELFRQGELNKGRR
IAFSSTSLLKMAPSAEERTTIHEMFLSTLDPKTISFRSRVLPSNAVWMENSKLKSLEICH
PQERNIFNRIFGGFLMRKAYELAWATACSFGGSRPFVVAVDDIMFQKPVEVGSLLFLSSQ
VCFTQNNYIQVRVHSEVASLQEKQHTTTNVFHFTFMSEKEVPLVFPKTYGESMLYLDGQR
HFNSMSGPATLRKDYLVEP
Function
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Active on long chain acyl-CoAs.
Reactome Pathway
Mitochondrial Fatty Acid Beta-Oxidation (R-HSA-77289 )
BioCyc Pathway
MetaCyc:HS04631-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Intellectual disability DISMBNXP Limited Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [5]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [6]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [7]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [8]
Obeticholic acid DM3Q1SM Approved Obeticholic acid increases the expression of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [9]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [11]
Octanal DMTN0OK Investigative Octanal increases the methylation of Acyl-coenzyme A thioesterase 9, mitochondrial (ACOT9). [14]
------------------------------------------------------------------------------------

References

1 Targeted Next-Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability.Hum Mutat. 2015 Dec;36(12):1197-204. doi: 10.1002/humu.22901. Epub 2015 Sep 30.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
7 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
8 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
9 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
10 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
14 DNA Methylome Analysis of Saturated Aliphatic Aldehydes in Pulmonary Toxicity. Sci Rep. 2018 Jul 12;8(1):10497. doi: 10.1038/s41598-018-28813-z.