General Information of Drug Off-Target (DOT) (ID: OTDAASNC)

DOT Name ADP-ribosylation factor-like protein 10 (ARL10)
Gene Name ARL10
UniProt ID
ARL10_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00025
Sequence
MAPRPLGPLVLALGGAAAVLGSVLFILWKTYFGRGRERRWDRGEAWWGAEAARLPEWDEW
DPEDEEDEEPALEELEQREVLVLGLDGAGKSTFLRVLSGKPPLEGHIPTWGFNSVRLPTK
DFEVDLLEIGGSQNLRFYWKEFVSEVDVLVFVVDSADRLRLPWARQELHKLLDKDPDLPV
VVVANKQDLSEAMSMGELQRELGLQAIDNQREVFLLAASIAPAGPTFEEPGTVHIWKLLL
ELLS

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of ADP-ribosylation factor-like protein 10 (ARL10). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of ADP-ribosylation factor-like protein 10 (ARL10). [6]
------------------------------------------------------------------------------------
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of ADP-ribosylation factor-like protein 10 (ARL10). [2]
Estradiol DMUNTE3 Approved Estradiol increases the expression of ADP-ribosylation factor-like protein 10 (ARL10). [3]
Testosterone DM7HUNW Approved Testosterone decreases the expression of ADP-ribosylation factor-like protein 10 (ARL10). [4]
Triclosan DMZUR4N Approved Triclosan decreases the expression of ADP-ribosylation factor-like protein 10 (ARL10). [5]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of ADP-ribosylation factor-like protein 10 (ARL10). [7]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of ADP-ribosylation factor-like protein 10 (ARL10). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
3 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
4 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
5 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
6 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
7 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
8 Cellular reactions to long-term volatile organic compound (VOC) exposures. Sci Rep. 2016 Dec 1;6:37842. doi: 10.1038/srep37842.