General Information of Drug Off-Target (DOT) (ID: OTEABPLV)

DOT Name Rho GTPase-activating protein 17 (ARHGAP17)
Synonyms Rho-type GTPase-activating protein 17; RhoGAP interacting with CIP4 homologs protein 1; RICH-1
Gene Name ARHGAP17
Related Disease
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Cervical cancer ( )
Cervical carcinoma ( )
Colon cancer ( )
Colon carcinoma ( )
Neoplasm ( )
UniProt ID
RHG17_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF03114 ; PF00620
Sequence
MKKQFNRMKQLANQTVGRAEKTEVLSEDLLQIERRLDTVRSICHHSHKRLVACFQGQHGT
DAERRHKKLPLTALAQNMQEASTQLEDSLLGKMLETCGDAENQLALELSQHEVFVEKEIV
DPLYGIAEVEIPNIQKQRKQLARLVLDWDSVRARWNQAHKSSGTNFQGLPSKIDTLKEEM
DEAGNKVEQCKDQLAADMYNFMAKEGEYGKFFVTLLEAQADYHRKALAVLEKTLPEMRAH
QDKWAEKPAFGTPLEEHLKRSGREIALPIEACVMLLLETGMKEEGLFRIGAGASKLKKLK
AALDCSTSHLDEFYSDPHAVAGALKSYLRELPEPLMTFNLYEEWTQVASVQDQDKKLQDL
WRTCQKLPPQNFVNFRYLIKFLAKLAQTSDVNKMTPSNIAIVLGPNLLWARNEGTLAEMA
AATSVHVVAVIEPIIQHADWFFPEEVEFNVSEAFVPLTTPSSNHSFHTGNDSDSGTLERK
RPASMAVMEGDLVKKESFGVKLMDFQAHRRGGTLNRKHISPAFQPPLPPTDGSTVVPAGP
EPPPQSSRAESSSGGGTVPSSAGILEQGPSPGDGSPPKPKDPVSAAVPAPGRNNSQIASG
QNQPQAAAGSHQLSMGQPHNAAGPSPHTLRRAVKKPAPAPPKPGNPPPGHPGGQSSSGTS
QHPPSLSPKPPTRSPSPPTQHTGQPPGQPSAPSQLSAPRRYSSSLSPIQAPNHPPPQPPT
QATPLMHTKPNSQGPPNPMALPSEHGLEQPSHTPPQTPTPPSTPPLGKQNPSLPAPQTLA
GGNPETAQPHAGTLPRPRPVPKPRNRPSVPPPPQPPGVHSAGDSSLTNTAPTASKIVTDS
NSRVSEPHRSIFPEMHSDSASKDVPGRILLDIDNDTESTAL
Function
Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1.
Tissue Specificity Ubiquitously expressed. Expressed at higher level in heart and placenta.
KEGG Pathway
Tight junction (hsa04530 )
Reactome Pathway
RAC1 GTPase cycle (R-HSA-9013149 )
RAC2 GTPase cycle (R-HSA-9013404 )
RHOD GTPase cycle (R-HSA-9013405 )
RHOQ GTPase cycle (R-HSA-9013406 )
RAC3 GTPase cycle (R-HSA-9013423 )
CDC42 GTPase cycle (R-HSA-9013148 )

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Altered Expression [1]
Breast cancer DIS7DPX1 Strong Biomarker [2]
Breast carcinoma DIS2UE88 Strong Biomarker [2]
Cervical cancer DISFSHPF Strong Altered Expression [3]
Cervical carcinoma DIST4S00 Strong Altered Expression [3]
Colon cancer DISVC52G Strong Biomarker [1]
Colon carcinoma DISJYKUO Strong Biomarker [1]
Neoplasm DISZKGEW Strong Biomarker [3]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Rho GTPase-activating protein 17 (ARHGAP17). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Rho GTPase-activating protein 17 (ARHGAP17). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Rho GTPase-activating protein 17 (ARHGAP17). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Rho GTPase-activating protein 17 (ARHGAP17). [7]
Quercetin DM3NC4M Approved Quercetin increases the expression of Rho GTPase-activating protein 17 (ARHGAP17). [8]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial decreases the expression of Rho GTPase-activating protein 17 (ARHGAP17). [9]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium decreases the expression of Rho GTPase-activating protein 17 (ARHGAP17). [9]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Rho GTPase-activating protein 17 (ARHGAP17). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Rho GTPase-activating protein 17 (ARHGAP17). [12]
Eugenol DM7US1H Patented Eugenol decreases the expression of Rho GTPase-activating protein 17 (ARHGAP17). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Rho GTPase-activating protein 17 (ARHGAP17). [15]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Rho GTPase-activating protein 17 (ARHGAP17). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Rho GTPase-activating protein 17 (ARHGAP17). [11]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Rho GTPase-activating protein 17 (ARHGAP17). [13]
------------------------------------------------------------------------------------

References

1 Tumor Suppressive Role of ARHGAP17 in Colon Cancer Through Wnt/-Catenin Signaling.Cell Physiol Biochem. 2018;46(5):2138-2148. doi: 10.1159/000489543. Epub 2018 Apr 28.
2 Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network.Int J Cancer. 2018 Dec 1;143(11):2905-2918. doi: 10.1002/ijc.31645. Epub 2018 Oct 9.
3 ARHGAP17 suppresses tumor progression and up-regulates P21 and P27 expression via inhibiting PI3K/AKT signaling pathway in cervical cancer.Gene. 2019 Apr 15;692:9-16. doi: 10.1016/j.gene.2019.01.004. Epub 2019 Jan 11.
4 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
14 Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol. 2007 May;44(12):3222-33.
15 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
16 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.