General Information of Drug Off-Target (DOT) (ID: OTEPHG0S)

DOT Name ATP-dependent Clp protease proteolytic subunit, mitochondrial (CLPP)
Synonyms EC 3.4.21.92; Endopeptidase Clp
Gene Name CLPP
Related Disease
Perrault syndrome 3 ( )
Pendred syndrome ( )
Perrault syndrome ( )
Mitochondrial disease ( )
Perrault syndrome 1 ( )
Perrault syndrome 2 ( )
Perrault syndrome 4 ( )
UniProt ID
CLPP_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1TG6; 6BBA; 6DL7; 6H23; 7UVM; 7UVN; 7UVR; 7UVU; 7UW0; 7VP9; 7WH5; 8HGK; 8I7X
EC Number
3.4.21.92
Pfam ID
PF00574
Sequence
MWPGILVGGARVASCRYPALGPRLAAHFPAQRPPQRTLQNGLALQRCLHATATRALPLIP
IVVEQTGRGERAYDIYSRLLRERIVCVMGPIDDSVASLVIAQLLFLQSESNKKPIHMYIN
SPGGVVTAGLAIYDTMQYILNPICTWCVGQAASMGSLLLAAGTPGMRHSLPNSRIMIHQP
SGGARGQATDIAIQAEEIMKLKKQLYNIYAKHTKQSLQVIESAMERDRYMSPMEAQEFGI
LDKVLVHPPQDGEDEPTLVQKEPVEAAPAAEPVPAST
Function
Protease component of the Clp complex that cleaves peptides and various proteins in an ATP-dependent process. Has low peptidase activity in the absence of CLPX. The Clp complex can degrade CSN1S1, CSN2 and CSN3, as well as synthetic peptides (in vitro) and may be responsible for a fairly general and central housekeeping function rather than for the degradation of specific substrates. Cleaves PINK1 in the mitochondrion.
Tissue Specificity Detected in liver (at protein level). Predominantly expressed in skeletal muscle. Intermediate levels in heart, liver and pancreas. Low in brain, placenta, lung and kidney.

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Perrault syndrome 3 DIS365S8 Definitive Autosomal recessive [1]
Pendred syndrome DISZ1MU8 Strong Genetic Variation [2]
Perrault syndrome DISG2YOV Supportive Autosomal recessive [3]
Mitochondrial disease DISKAHA3 Limited Biomarker [4]
Perrault syndrome 1 DISP3IK3 Limited Biomarker [5]
Perrault syndrome 2 DIS5PQ0K Limited Biomarker [5]
Perrault syndrome 4 DISCAHXP Limited Biomarker [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Josamycin DMKJ8LB Approved ATP-dependent Clp protease proteolytic subunit, mitochondrial (CLPP) affects the response to substance of Josamycin. [14]
Afimoxifene DMFORDT Phase 2 ATP-dependent Clp protease proteolytic subunit, mitochondrial (CLPP) affects the response to substance of Afimoxifene. [15]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of ATP-dependent Clp protease proteolytic subunit, mitochondrial (CLPP). [6]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of ATP-dependent Clp protease proteolytic subunit, mitochondrial (CLPP). [10]
------------------------------------------------------------------------------------
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of ATP-dependent Clp protease proteolytic subunit, mitochondrial (CLPP). [7]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of ATP-dependent Clp protease proteolytic subunit, mitochondrial (CLPP). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of ATP-dependent Clp protease proteolytic subunit, mitochondrial (CLPP). [9]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of ATP-dependent Clp protease proteolytic subunit, mitochondrial (CLPP). [11]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of ATP-dependent Clp protease proteolytic subunit, mitochondrial (CLPP). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of ATP-dependent Clp protease proteolytic subunit, mitochondrial (CLPP). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Unresolved questions regarding human hereditary deafness.Oral Dis. 2017 Jul;23(5):551-558. doi: 10.1111/odi.12516. Epub 2016 Jul 11.
3 Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am J Hum Genet. 2013 Apr 4;92(4):605-13. doi: 10.1016/j.ajhg.2013.02.013. Epub 2013 Mar 28.
4 CLPP deficiency protects against metabolic syndrome but hinders adaptive thermogenesis.EMBO Rep. 2018 May;19(5):e45126. doi: 10.15252/embr.201745126. Epub 2018 Mar 27.
5 Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors.Hum Mol Genet. 2013 Dec 15;22(24):4871-87. doi: 10.1093/hmg/ddt338. Epub 2013 Jul 12.
6 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
7 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
11 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
12 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
13 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
14 A genome-wide analysis of targets of macrolide antibiotics in mammalian cells. J Biol Chem. 2020 Feb 14;295(7):2057-2067. doi: 10.1074/jbc.RA119.010770. Epub 2020 Jan 8.
15 Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2730-5. doi: 10.1073/pnas.1018872108. Epub 2011 Apr 11.