General Information of Drug Off-Target (DOT) (ID: OTHBGNXE)

DOT Name Splicing factor 3A subunit 3 (SF3A3)
Synonyms SF3a60; Spliceosome-associated protein 61; SAP 61
Gene Name SF3A3
Related Disease
HIV infectious disease ( )
Non-small-cell lung cancer ( )
UniProt ID
SF3A3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2DT7; 5Z56; 5Z57; 5Z58; 6AH0; 6AHD; 6FF7; 6QX9; 6Y50; 6Y53; 6Y5Q; 7ABG; 7ABH; 7ABI; 7EVO; 7ONB; 7Q3L; 7Q4O; 7Q4P; 7QTT; 7VPX; 8CH6; 8HK1
Pfam ID
PF13297 ; PF16837 ; PF12108 ; PF11931
Sequence
METILEQQRRYHEEKERLMDVMAKEMLTKKSTLRDQINSDHRTRAMQDRYMEVSGNLRDL
YDDKDGLRKEELNAISGPNEFAEFYNRLKQIKEFHRKHPNEICVPMSVEFEELLKARENP
SEEAQNLVEFTDEEGYGRYLDLHDCYLKYINLKASEKLDYITYLSIFDQLFDIPKERKNA
EYKRYLEMLLEYLQDYTDRVKPLQDQNELFGKIQAEFEKKWENGTFPGWPKETSSALTHA
GAHLDLSAFSSWEELASLGLDRLKSALLALGLKCGGTLEERAQRLFSTKGKSLESLDTSL
FAKNPKSKGTKRDTERNKDIAFLEAQIYEYVEILGEQRHLTHENVQRKQARTGEEREEEE
EEQISESESEDEENEIIYNPKNLPLGWDGKPIPYWLYKLHGLNINYNCEICGNYTYRGPK
AFQRHFAEWRHAHGMRCLGIPNTAHFANVTQIEDAVSLWAKLKLQKASERWQPDTEEEYE
DSSGNVVNKKTYEDLKRQGLL
Function
Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs. The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing. Within the 17S U2 SnRNP complex, SF3A3 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex. Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes.
Tissue Specificity Ubiquitous.
KEGG Pathway
Spliceosome (hsa03040 )
Reactome Pathway
mRNA Splicing - Major Pathway (R-HSA-72163 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
HIV infectious disease DISO97HC Strong Biomarker [1]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
PEITC DMOMN31 Phase 2 Splicing factor 3A subunit 3 (SF3A3) affects the binding of PEITC. [12]
------------------------------------------------------------------------------------
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Splicing factor 3A subunit 3 (SF3A3). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Splicing factor 3A subunit 3 (SF3A3). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Splicing factor 3A subunit 3 (SF3A3). [5]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Splicing factor 3A subunit 3 (SF3A3). [6]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Splicing factor 3A subunit 3 (SF3A3). [7]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Splicing factor 3A subunit 3 (SF3A3). [10]
PP-242 DM2348V Investigative PP-242 increases the expression of Splicing factor 3A subunit 3 (SF3A3). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Splicing factor 3A subunit 3 (SF3A3). [8]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Splicing factor 3A subunit 3 (SF3A3). [9]
------------------------------------------------------------------------------------

References

1 Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency.J Virol. 2004 Sep;78(17):9458-73. doi: 10.1128/JVI.78.17.9458-9473.2004.
2 A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small cell lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment.Mol Oncol. 2017 May;11(5):534-551. doi: 10.1002/1878-0261.12052. Epub 2017 Apr 11.
3 Retinoic acid-induced downmodulation of telomerase activity in human cancer cells. Exp Mol Pathol. 2005 Oct;79(2):108-17.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
7 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
8 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
9 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
10 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
11 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.
12 Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol. 2011 Oct 17;24(10):1735-43. doi: 10.1021/tx2002806. Epub 2011 Aug 26.