General Information of Drug Off-Target (DOT) (ID: OTHTBYDN)

DOT Name Transmembrane protein 106A (TMEM106A)
Gene Name TMEM106A
Related Disease
Advanced cancer ( )
Gastric cancer ( )
Metastatic malignant neoplasm ( )
Neoplasm ( )
Stomach cancer ( )
Kidney cancer ( )
Renal carcinoma ( )
UniProt ID
T106A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07092 ; PF21002
Sequence
MGKTFSQLGSWREDENKSILSSKPAIGSKAVNYSSTGSSKSFCSCVPCEGTADASFVTCP
TCQGSGKIPQELEKQLVALIPYGDQRLKPKHTKLFVFLAVLICLVTSSFIVFFLFPRSVI
VQPAGLNSSTVAFDEADIYLNITNILNISNGNYYPIMVTQLTLEVLHLSLVVGQVSNNLL
LHIGPLASEQMFYAVATKIRDENTYKICTWLEIKVHHVLLHIQGTLTCSYLSHSEQLVFQ
SYEYVDCRGNASVPHQLTPHPP
Function
Activates macrophages and polarizes them into M1-like macrophages through the activation of the MAPK and NF-kappaB signaling pathway. Upon activation, up-regulates the expression of CD80, CD86, CD69 and MHC II on macrophages, and induces the release of pro-inflammatory cytokines such as TNF, IL1B, IL6, CCL2 and nitric oxide. May play a role in inhibition of proliferation and migration.
Tissue Specificity Expressed in renal cells (at protein level) . Expressed in epithelial cells .

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Gastric cancer DISXGOUK Strong Posttranslational Modification [1]
Metastatic malignant neoplasm DIS86UK6 Strong Posttranslational Modification [1]
Neoplasm DISZKGEW Strong Biomarker [2]
Stomach cancer DISKIJSX Strong Posttranslational Modification [1]
Kidney cancer DISBIPKM Limited Biomarker [2]
Renal carcinoma DISER9XT Limited Biomarker [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Transmembrane protein 106A (TMEM106A). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Transmembrane protein 106A (TMEM106A). [4]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Transmembrane protein 106A (TMEM106A). [5]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Transmembrane protein 106A (TMEM106A). [6]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Transmembrane protein 106A (TMEM106A). [7]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Transmembrane protein 106A (TMEM106A). [8]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Transmembrane protein 106A (TMEM106A). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Transmembrane protein 106A (TMEM106A). [5]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Transmembrane protein 106A (TMEM106A). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Transmembrane protein 106A (TMEM106A). [11]
------------------------------------------------------------------------------------

References

1 Transmembrane protein 106A is silenced by promoter region hypermethylation and suppresses gastric cancer growth by inducing apoptosis.J Cell Mol Med. 2014 Aug;18(8):1655-66. doi: 10.1111/jcmm.12352. Epub 2014 Jun 28.
2 TMEM106A inhibits cell proliferation, migration, and induces apoptosis of lung cancer cells.J Cell Biochem. 2019 May;120(5):7825-7833. doi: 10.1002/jcb.28057. Epub 2018 Nov 19.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
9 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.