General Information of Drug Off-Target (DOT) (ID: OTI56YTK)

DOT Name Cathepsin F (CTSF)
Synonyms CATSF; EC 3.4.22.41
Gene Name CTSF
Related Disease
Adult neuronal ceroid lipofuscinosis ( )
Neuronal ceroid lipofuscinosis 13 ( )
UniProt ID
CATF_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1M6D
EC Number
3.4.22.41
Pfam ID
PF08246 ; PF00112
Sequence
MAPWLQLLSLLGLLPGAVAAPAQPRAASFQAWGPPSPELLAPTRFALEMFNRGRAAGTRA
VLGLVRGRVRRAGQGSLYSLEATLEEPPCNDPMVCRLPVSKKTLLCSFQVLDELGRHVLL
RKDCGPVDTKVPGAGEPKSAFTQGSAMISSLSQNHPDNRNETFSSVISLLNEDPLSQDLP
VKMASIFKNFVITYNRTYESKEEARWRLSVFVNNMVRAQKIQALDRGTAQYGVTKFSDLT
EEEFRTIYLNTLLRKEPGNKMKQAKSVGDLAPPEWDWRSKGAVTKVKDQGMCGSCWAFSV
TGNVEGQWFLNQGTLLSLSEQELLDCDKMDKACMGGLPSNAYSAIKNLGGLETEDDYSYQ
GHMQSCNFSAEKAKVYINDSVELSQNEQKLAAWLAKRGPISVAINAFGMQFYRHGISRPL
RPLCSPWLIDHAVLLVGYGNRSDVPFWAIKNSWGTDWGEKGYYYLHRGSGACGVNTMASS
AVVD
Function Thiol protease which is believed to participate in intracellular degradation and turnover of proteins. Has also been implicated in tumor invasion and metastasis.
Tissue Specificity High expression levels in heart, skeletal muscle, brain, testis and ovary; moderate levels in prostate, placenta, liver and colon; and no detectable expression in peripheral leukocytes and thymus.
KEGG Pathway
Lysosome (hsa04142 )
Apoptosis (hsa04210 )
Reactome Pathway
MHC class II antigen presentation (R-HSA-2132295 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adult neuronal ceroid lipofuscinosis DIS5UHAA Definitive Autosomal recessive [1]
Neuronal ceroid lipofuscinosis 13 DISZGTC7 Strong Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Cathepsin F (CTSF). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Cathepsin F (CTSF). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Cathepsin F (CTSF). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Cathepsin F (CTSF). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Cathepsin F (CTSF). [7]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Cathepsin F (CTSF). [8]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Cathepsin F (CTSF). [9]
GSK2110183 DMZHB37 Phase 2 GSK2110183 increases the expression of Cathepsin F (CTSF). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Cathepsin F (CTSF). [12]
PP-242 DM2348V Investigative PP-242 increases the expression of Cathepsin F (CTSF). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Cathepsin F (CTSF). [11]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
8 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
9 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
10 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
13 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.