General Information of Drug Off-Target (DOT) (ID: OTID6YNN)

DOT Name Glomulin (GLMN)
Synonyms FK506-binding protein-associated protein; FAP; FKBP-associated protein
Gene Name GLMN
Related Disease
Glomuvenous malformation ( )
UniProt ID
GLMN_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4F52
Pfam ID
PF08568
Sequence
MAVEELQSIIKRCQILEEQDFKEEDFGLFQLAGQRCIEEGHTDQLLEIIQNEKNKVIIKN
MGWNLVGPVVRCLLCKDKEDSKRKVYFLIFDLLVKLCNPKELLLGLLELIEEPSGKQISQ
SILLLLQPLQTVIQKLHNKAYSIGLALSTLWNQLSLLPVPYSKEQIQMDDYGLCQCCKAL
IEFTKPFVEEVIDNKENSLENEKLKDELLKFCFKSLKCPLLTAQFFEQSEEGGNDPFRYF
ASEIIGFLSAIGHPFPKMIFNHGRKKRTWNYLEFEEEENKQLADSMASLAYLVFVQGIHI
DQLPMVLSPLYLLQFNMGHIEVFLQRTEESVISKGLELLENSLLRIEDNSLLYQYLEIKS
FLTVPQGLVKVMTLCPIETLRKKSLAMLQLYINKLDSQGKYTLFRCLLNTSNHSGVEAFI
IQNIKNQIDMSLKRTRNNKWFTGPQLISLLDLVLFLPEGAETDLLQNSDRIMASLNLLRY
LVIKDNENDNQTGLWTELGNIENNFLKPLHIGLNMSKAHYEAEIKNSQEAQKSKDLCSIT
VSGEEIPNMPPEMQLKVLHSALFTFDLIESVLARVEELIEIKTKSTSEENIGIK
Function
[Isoform 1]: Regulatory component of cullin-RING-based SCF (SKP1-Cullin-F-box protein) E3 ubiquitin-protein ligase complexes. Inhibits E3 ubiquitin ligase activity by binding to RBX1 (via RING domain) and inhibiting its interaction with the E2 ubiquitin-conjugating enzyme CDC34. Inhibits RBX1-mediated neddylation of CUL1. Required for normal stability and normal cellular levels of key components of SCF ubiquitin ligase complexes, including FBXW7, RBX1, CUL1, CUL2, CUL3, CUL4A, and thereby contributes to the regulation of CCNE1 and MYC levels. Essential for normal development of the vasculature. Contributes to the regulation of RPS6KB1 phosphorylation.
Tissue Specificity Ubiquitous.
KEGG Pathway
Shigellosis (hsa05131 )
Reactome Pathway
Antigen processing (R-HSA-983168 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Glomuvenous malformation DIS5UNDD Definitive Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Glomulin (GLMN). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Glomulin (GLMN). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Glomulin (GLMN). [4]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Glomulin (GLMN). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Glomulin (GLMN). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Glomulin (GLMN). [7]
Selenium DM25CGV Approved Selenium decreases the expression of Glomulin (GLMN). [8]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Glomulin (GLMN). [8]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Glomulin (GLMN). [10]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Glomulin (GLMN). [12]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Glomulin (GLMN). [13]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Glomulin (GLMN). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Glomulin (GLMN). [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Glomulin (GLMN). [11]
------------------------------------------------------------------------------------

References

1 Linkage disequilibrium narrows locus for venous malformation with glomus cells (VMGLOM) to a single 1.48 Mbp YAC. Eur J Hum Genet. 2001 Jan;9(1):34-8. doi: 10.1038/sj.ejhg.5200576.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
9 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
10 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
11 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
12 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
13 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
14 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.