General Information of Drug Off-Target (DOT) (ID: OTIR1VDW)

DOT Name Phosphopentomutase (PGM2)
Synonyms EC 5.4.2.7; Glucose phosphomutase 2; Phosphodeoxyribomutase; Phosphoglucomutase-2; EC 5.4.2.2
Gene Name PGM2
UniProt ID
PGM2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
5.4.2.2; 5.4.2.7
Pfam ID
PF02878 ; PF02879 ; PF02880
Sequence
MAAPEGSGLGEDARLDQETAQWLRWDKNSLTLEAVKRLIAEGNKEELRKCFGARMEFGTA
GLRAAMGPGISRMNDLTIIQTTQGFCRYLEKQFSDLKQKGIVISFDARAHPSSGGSSRRF
ARLAATTFISQGIPVYLFSDITPTPFVPFTVSHLKLCAGIMITASHNPKQDNGYKVYWDN
GAQIISPHDKGISQAIEENLEPWPQAWDDSLIDSSPLLHNPSASINNDYFEDLKKYCFHR
SVNRETKVKFVHTSVHGVGHSFVQSAFKAFDLVPPEAVPEQKDPDPEFPTVKYPNPEEGK
GVLTLSFALADKTKARIVLANDPDADRLAVAEKQDSGEWRVFSGNELGALLGWWLFTSWK
EKNQDRSALKDTYMLSSTVSSKILRAIALKEGFHFEETLTGFKWMGNRAKQLIDQGKTVL
FAFEEAIGYMCCPFVLDKDGVSAAVISAELASFLATKNLSLSQQLKAIYVEYGYHITKAS
YFICHDQETIKKLFENLRNYDGKNNYPKACGKFEISAIRDLTTGYDDSQPDKKAVLPTSK
SSQMITFTFANGGVATMRTSGTEPKIKYYAELCAPPGNSDPEQLKKELNELVSAIEEHFF
QPQKYNLQPKAD
Function
Catalyzes the conversion of the nucleoside breakdown products ribose-1-phosphate and deoxyribose-1-phosphate to the corresponding 5-phosphopentoses. Catalyzes the interconversion of glucose-1-phosphate into glucose-6-phosphate but with a lower catalytic efficiency. In vitro, has also a low glucose 1,6-bisphosphate synthase activity which is most probably not physiologically relevant.
KEGG Pathway
Glycolysis / Gluconeogenesis (hsa00010 )
Pentose phosphate pathway (hsa00030 )
Galactose metabolism (hsa00052 )
Purine metabolism (hsa00230 )
Starch and sucrose metabolism (hsa00500 )
Amino sugar and nucleotide sugar metabolism (hsa00520 )
Metabolic pathways (hsa01100 )
Biosynthesis of nucleotide sugars (hsa01250 )
Reactome Pathway
Pentose phosphate pathway (R-HSA-71336 )
Neutrophil degranulation (R-HSA-6798695 )
BioCyc Pathway
MetaCyc:HS09924-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
DTI-015 DMXZRW0 Approved Phosphopentomutase (PGM2) affects the response to substance of DTI-015. [16]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Phosphopentomutase (PGM2). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Phosphopentomutase (PGM2). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Phosphopentomutase (PGM2). [3]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Phosphopentomutase (PGM2). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Phosphopentomutase (PGM2). [5]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Phosphopentomutase (PGM2). [6]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Phosphopentomutase (PGM2). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Phosphopentomutase (PGM2). [8]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Phosphopentomutase (PGM2). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Phosphopentomutase (PGM2). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Phosphopentomutase (PGM2). [11]
KOJIC ACID DMP84CS Investigative KOJIC ACID increases the expression of Phosphopentomutase (PGM2). [14]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Phosphopentomutase (PGM2). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Phosphopentomutase (PGM2). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Phosphopentomutase (PGM2). [13]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 Proteomics-based identification of differentially abundant proteins from human keratinocytes exposed to arsenic trioxide. J Proteomics Bioinform. 2014 Jul;7(7):166-178.
8 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
9 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
10 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
11 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
12 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
13 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
14 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.
15 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.
16 Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006 Jan 10;24(2):274-87. doi: 10.1200/JCO.2005.02.9405. Epub 2005 Dec 19.