General Information of Drug Off-Target (DOT) (ID: OTIR8URJ)

DOT Name Ashwin (C2ORF49)
Gene Name C2ORF49
Related Disease
Atopic dermatitis ( )
UniProt ID
ASHWN_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15323
Sequence
MAGDVGGRSCTDSELLLHPELLSQEFLLLTLEQKNIAVETDVRVNKDSLTDLYVQHAIPL
PQRDLPKNRWGKMMEKKREQHEIKNETKRSSTVDGLRKRPLIVFDGSSTSTSIKVKKTEN
GDNDRLKPPPQASFTSNAFRKLSNSSSSVSPLILSSNLPVNNKTEHNNNDAKQNHDLTHR
KSPSGPVKSPPLSPVGTTPVKLKRAAPKEEAEAMNNLKPPQAKRKIQHVTWP
Reactome Pathway
tRNA processing in the nucleus (R-HSA-6784531 )
BioCyc Pathway
MetaCyc:ENSG00000135974-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Atopic dermatitis DISTCP41 Strong Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Ashwin (C2ORF49). [2]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Ashwin (C2ORF49). [13]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid increases the phosphorylation of Ashwin (C2ORF49). [14]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Ashwin (C2ORF49). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Ashwin (C2ORF49). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Ashwin (C2ORF49). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Ashwin (C2ORF49). [6]
Testosterone DM7HUNW Approved Testosterone increases the expression of Ashwin (C2ORF49). [7]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Ashwin (C2ORF49). [8]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Ashwin (C2ORF49). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Ashwin (C2ORF49). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Ashwin (C2ORF49). [11]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Ashwin (C2ORF49). [12]
QUERCITRIN DM1DH96 Investigative QUERCITRIN decreases the expression of Ashwin (C2ORF49). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Tiled array-based sequencing identifies enrichment of loss-of-function variants in the highly homologous filaggrin gene in African-American children with severe atopic dermatitis.Exp Dermatol. 2018 Sep;27(9):989-992. doi: 10.1111/exd.13691. Epub 2018 Jun 28.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Cyclosporine A--induced oxidative stress in human renal mesangial cells: a role for ERK 1/2 MAPK signaling. Toxicol Sci. 2012 Mar;126(1):101-13.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
8 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
12 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
14 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.
15 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.