General Information of Drug Off-Target (DOT) (ID: OTJIUMDG)

DOT Name Ubiquitin-like modifier-activating enzyme 6
Synonyms Ubiquitin-activating enzyme 6; EC 6.2.1.45; Monocyte protein 4; MOP-4; Ubiquitin-activating enzyme E1-like protein 2; E1-L2
Gene Name UBA6
Related Disease
Intellectual disability ( )
UniProt ID
UBA6_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7PVN; 7PYV; 7SOL
EC Number
6.2.1.45
Pfam ID
PF16191 ; PF16190 ; PF09358 ; PF00899 ; PF10585
Sequence
MEGSEPVAAHQGEEASCSSWGTGSTNKNLPIMSTASVEIDDALYSRQRYVLGDTAMQKMA
KSHVFLSGMGGLGLEIAKNLVLAGIKAVTIHDTEKCQAWDLGTNFFLSEDDVVNKRNRAE
AVLKHIAELNPYVHVTSSSVPFNETTDLSFLDKYQCVVLTEMKLPLQKKINDFCRSQCPP
IKFISADVHGIWSRLFCDFGDEFEVLDTTGEEPKEIFISNITQANPGIVTCLENHPHKLE
TGQFLTFREINGMTGLNGSIQQITVISPFSFSIGDTTELEPYLHGGIAVQVKTPKTVFFE
SLERQLKHPKCLIVDFSNPEAPLEIHTAMLALDQFQEKYSRKPNVGCQQDSEELLKLATS
ISETLEEKPDVNADIVHWLSWTAQGFLSPLAAAVGGVASQEVLKAVTGKFSPLCQWLYLE
AADIVESLGKPECEEFLPRGDRYDALRACIGDTLCQKLQNLNIFLVGCGAIGCEMLKNFA
LLGVGTSKEKGMITVTDPDLIEKSNLNRQFLFRPHHIQKPKSYTAADATLKINSQIKIDA
HLNKVCPTTETIYNDEFYTKQDVIITALDNVEARRYVDSRCLANLRPLLDSGTMGTKGHT
EVIVPHLTESYNSHRDPPEEEIPFCTLKSFPAAIEHTIQWARDKFESSFSHKPSLFNKFW
QTYSSAEEVLQKIQSGHSLEGCFQVIKLLSRRPRNWSQCVELARLKFEKYFNHKALQLLH
CFPLDIRLKDGSLFWQSPKRPPSPIKFDLNEPLHLSFLQNAAKLYATVYCIPFAEEDLSA
DALLNILSEVKIQEFKPSNKVVQTDETARKPDHVPISSEDERNAIFQLEKAILSNEATKS
DLQMAVLSFEKDDDHNGHIDFITAASNLRAKMYSIEPADRFKTKRIAGKIIPAIATTTAT
VSGLVALEMIKVTGGYPFEAYKNCFLNLAIPIVVFTETTEVRKTKIRNGISFTIWDRWTV
HGKEDFTLLDFINAVKEKYGIEPTMVVQGVKMLYVPVMPGHAKRLKLTMHKLVKPTTEKK
YVDLTVSFAPDIDGDEDLPGPPVRYYFSHDTD
Function
Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP. Specific for ubiquitin, does not activate ubiquitin-like peptides. Differs from UBE1 in its specificity for substrate E2 charging. Does not charge cell cycle E2s, such as CDC34. Essential for embryonic development. Required for UBD/FAT10 conjugation. Isoform 2 may play a key role in ubiquitin system and may influence spermatogenesis and male fertility.
Tissue Specificity Widely expressed. Isoform 2 is predominantly expressed in testis with higher expression in adult testis than in fetal testis.
KEGG Pathway
Ubiquitin mediated proteolysis (hsa04120 )
Reactome Pathway
Antigen processing (R-HSA-983168 )
Synthesis of active ubiquitin (R-HSA-8866652 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Intellectual disability DISMBNXP Limited Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Ubiquitin-like modifier-activating enzyme 6. [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Ubiquitin-like modifier-activating enzyme 6. [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Ubiquitin-like modifier-activating enzyme 6. [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Ubiquitin-like modifier-activating enzyme 6. [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Ubiquitin-like modifier-activating enzyme 6. [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Ubiquitin-like modifier-activating enzyme 6. [7]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Ubiquitin-like modifier-activating enzyme 6. [8]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Ubiquitin-like modifier-activating enzyme 6. [9]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Ubiquitin-like modifier-activating enzyme 6. [10]
Sodium phenylbutyrate DMXLBCQ Approved Sodium phenylbutyrate decreases the expression of Ubiquitin-like modifier-activating enzyme 6. [11]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Ubiquitin-like modifier-activating enzyme 6. [13]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Ubiquitin-like modifier-activating enzyme 6. [14]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Ubiquitin-like modifier-activating enzyme 6. [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Ubiquitin-like modifier-activating enzyme 6. [12]
------------------------------------------------------------------------------------

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
9 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
10 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
11 Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins. Physiol Genomics. 2004 Jan 15;16(2):204-11.
12 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
13 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
14 Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro. 2017 Aug;42:247-254.
15 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.