General Information of Drug Off-Target (DOT) (ID: OTKAZ8ZW)

DOT Name RING finger protein 175 (RNF175)
Gene Name RNF175
UniProt ID
RN175_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00097
Sequence
MAAGTAARKAAPVLEAPPQQEQLSHTKLSAEDTWNLQQERMYKMHRGHDSMHVEMILIFL
CVLVIAQIVLVQWRQRHGRSYNLVTLLQMWVVPLYFTIKLYWWRFLSMWGMFSVITSYIL
FRATRKPLSGRTPRLVYKWFLLIYKLSYAFGVVGYLAIMFTMCGFNLFFKIKARDSMDFG
IVSLFYGLYYGVMGRDFAEICSDYMASTIGFYSVSRLPTRSLSDNICAVCGQKIIVELDE
EGLIENTYQLSCNHVFHEFCIRGWCIVGKKQTCPYCKEKVDLKRMISNPWERTHFLYGQI
LDWLRYLVAWQPVVIGIVQGIIYSLGLE

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of RING finger protein 175 (RNF175). [1]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of RING finger protein 175 (RNF175). [2]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of RING finger protein 175 (RNF175). [4]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of RING finger protein 175 (RNF175). [5]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of RING finger protein 175 (RNF175). [7]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of RING finger protein 175 (RNF175). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of RING finger protein 175 (RNF175). [3]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of RING finger protein 175 (RNF175). [6]
------------------------------------------------------------------------------------

References

1 Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
2 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
3 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
4 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
5 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
6 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
7 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
8 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.