General Information of Drug Off-Target (DOT) (ID: OTLY5BAC)

DOT Name Tubby protein homolog
Gene Name TUB
Related Disease
Retinal dystrophy and obesity ( )
Retinitis pigmentosa ( )
Essential tremor ( )
UniProt ID
TUB_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1S31
Pfam ID
PF01167 ; PF16322
Sequence
MTSKPHSDWIPYSVLDDEGRNLRQQKLDRQRALLEQKQKKKRQEPLMVQANADGRPRSRR
ARQSEEQAPLVESYLSSSGSTSYQVQEADSLASVQLGATRPTAPASAKRTKAAATAGGQG
GAARKEKKGKHKGTSGPAALAEDKSEAQGPVQILTVGQSDHAQDAGETAAGGGERPSGQD
LRATMQRKGISSSMSFDEDEEDEEENSSSSSQLNSNTRPSSATSRKSVREAASAPSPTAP
EQPVDVEVQDLEEFALRPAPQGITIKCRITRDKKGMDRGMYPTYFLHLDREDGKKVFLLA
GRKRKKSKTSNYLISVDPTDLSRGGDSYIGKLRSNLMGTKFTVYDNGVNPQKASSSTLES
GTLRQELAAVCYETNVLGFKGPRKMSVIVPGMNMVHERVSIRPRNEHETLLARWQNKNTE
SIIELQNKTPVWNDDTQSYVLNFHGRVTQASVKNFQIIHGNDPDYIVMQFGRVAEDVFTM
DYNYPLCALQAFAIALSSFDSKLACE
Function
Functions in signal transduction from heterotrimeric G protein-coupled receptors. Binds to membranes containing phosphatidylinositol 4,5-bisphosphate. Can bind DNA (in vitro). May contribute to the regulation of transcription in the nucleus. Could be involved in the hypothalamic regulation of body weight. Contribute to stimulation of phagocytosis of apoptotic retinal pigment epithelium (RPE) cells and macrophages.

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Retinal dystrophy and obesity DISSJRZ7 Strong Autosomal recessive [1]
Retinitis pigmentosa DISCGPY8 Supportive Autosomal dominant [2]
Essential tremor DIS7GBKQ Limited Autosomal dominant [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Tubby protein homolog. [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Tubby protein homolog. [12]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Tubby protein homolog. [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Tubby protein homolog. [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Tubby protein homolog. [7]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Tubby protein homolog. [8]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Tubby protein homolog. [9]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Tubby protein homolog. [9]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Tubby protein homolog. [10]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Tubby protein homolog. [11]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Tubby protein homolog. [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Tubby protein homolog. [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Tubby protein homolog. [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Targeted deletion of the tub mouse obesity gene reveals that tubby is a loss-of-function mutation. Mol Cell Biol. 2000 Feb;20(3):878-82. doi: 10.1128/MCB.20.3.878-882.2000.
2 A homozygous mutation in the TUB gene associated with retinal dystrophy and obesity. Hum Mutat. 2014 Mar;35(3):289-93. doi: 10.1002/humu.22482. Epub 2013 Dec 20.
3 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
9 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Anti-proliferative and gene expression actions of resveratrol in breast cancer cells in vitro. Oncotarget. 2014 Dec 30;5(24):12891-907.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
14 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
15 Cultured human peripheral blood mononuclear cells alter their gene expression when challenged with endocrine-disrupting chemicals. Toxicology. 2013 Jan 7;303:17-24.