General Information of Drug Off-Target (DOT) (ID: OTOXZQ4K)

DOT Name Leucine-rich repeat-containing protein 57 (LRRC57)
Gene Name LRRC57
Related Disease
Bipolar disorder ( )
Schizophrenia ( )
UniProt ID
LRC57_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00560 ; PF13855
Sequence
MGNSALRAHVETAQKTGVFQLKDRGLTEFPADLQKLTSNLRTIDLSNNKIESLPPLLIGK
FTLLKSLSLNNNKLTVLPDEICNLKKLETLSLNNNHLRELPSTFGQLSALKTLSLSGNQL
GALPPQLCSLRHLDVMDLSKNQIRSIPDSVGELQVIELNLNQNQISQISVKISCCPRLKI
LRLEENCLELSMLPQSILSDSQICLLAVEGNLFEIKKLRELEGYDKYMERFTATKKKFA

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Bipolar disorder DISAM7J2 Strong Altered Expression [1]
Schizophrenia DISSRV2N Strong Altered Expression [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Leucine-rich repeat-containing protein 57 (LRRC57). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Leucine-rich repeat-containing protein 57 (LRRC57). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Leucine-rich repeat-containing protein 57 (LRRC57). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Leucine-rich repeat-containing protein 57 (LRRC57). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Leucine-rich repeat-containing protein 57 (LRRC57). [6]
Testosterone DM7HUNW Approved Testosterone increases the expression of Leucine-rich repeat-containing protein 57 (LRRC57). [7]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Leucine-rich repeat-containing protein 57 (LRRC57). [8]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Leucine-rich repeat-containing protein 57 (LRRC57). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Leucine-rich repeat-containing protein 57 (LRRC57). [9]
------------------------------------------------------------------------------------

References

1 Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders.Genome Biol. 2018 Nov 12;19(1):194. doi: 10.1186/s13059-018-1567-1.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
7 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
8 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
9 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
10 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.