General Information of Drug Off-Target (DOT) (ID: OTPL3Z8A)

DOT Name ATP-sensitive inward rectifier potassium channel 10 (KCNJ10)
Synonyms ATP-dependent inwardly rectifying potassium channel Kir4.1; Inward rectifier K(+) channel Kir1.2; Potassium channel, inwardly rectifying subfamily J member 10
Gene Name KCNJ10
Related Disease
EAST syndrome ( )
Pendred syndrome ( )
Enlarged vestibular aqueduct syndrome ( )
UniProt ID
KCJ10_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01007 ; PF17655
Sequence
MTSVAKVYYSQTTQTESRPLMGPGIRRRRVLTKDGRSNVRMEHIADKRFLYLKDLWTTFI
DMQWRYKLLLFSATFAGTWFLFGVVWYLVAVAHGDLLELDPPANHTPCVVQVHTLTGAFL
FSLESQTTIGYGFRYISEECPLAIVLLIAQLVLTTILEIFITGTFLAKIARPKKRAETIR
FSQHAVVASHNGKPCLMIRVANMRKSLLIGCQVTGKLLQTHQTKEGENIRLNQVNVTFQV
DTASDSPFLILPLTFYHVVDETSPLKDLPLRSGEGDFELVLILSGTVESTSATCQVRTSY
LPEEILWGYEFTPAISLSASGKYIADFSLFDQVVKVASPSGLRDSTVRYGDPEKLKLEES
LREQAEKEGSALSVRISNV
Function
May be responsible for potassium buffering action of glial cells in the brain. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium and cesium. In the kidney, together with KCNJ16, mediates basolateral K(+) recycling in distal tubules; this process is critical for Na(+) reabsorption at the tubules.
Tissue Specificity Expressed in kidney (at protein level).
KEGG Pathway
Gastric acid secretion (hsa04971 )
Huntington disease (hsa05016 )
Reactome Pathway
Potassium transport channels (R-HSA-1296067 )
Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits (R-HSA-997272 )
Activation of G protein gated Potassium channels (R-HSA-1296041 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
EAST syndrome DISSXDQ8 Definitive Autosomal recessive [1]
Pendred syndrome DISZ1MU8 Supportive Autosomal recessive [2]
Enlarged vestibular aqueduct syndrome DISLGBBO Disputed Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of ATP-sensitive inward rectifier potassium channel 10 (KCNJ10). [3]
Estradiol DMUNTE3 Approved Estradiol increases the expression of ATP-sensitive inward rectifier potassium channel 10 (KCNJ10). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of ATP-sensitive inward rectifier potassium channel 10 (KCNJ10). [4]
Marinol DM70IK5 Approved Marinol increases the expression of ATP-sensitive inward rectifier potassium channel 10 (KCNJ10). [6]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of ATP-sensitive inward rectifier potassium channel 10 (KCNJ10). [7]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of ATP-sensitive inward rectifier potassium channel 10 (KCNJ10). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of ATP-sensitive inward rectifier potassium channel 10 (KCNJ10). [5]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of ATP-sensitive inward rectifier potassium channel 10 (KCNJ10). [8]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Pendred Syndrome?/ Nonsyndromic Enlarged Vestibular Aqueduct. 1998 Sep 28 [updated 2020 Jun 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
5 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
6 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
7 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
8 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
9 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.