General Information of Drug Off-Target (DOT) (ID: OTPUUJYX)

DOT Name SURP and G-patch domain-containing protein 2 (SUGP2)
Synonyms Arginine/serine-rich-splicing factor 14; Splicing factor, arginine/serine-rich 14
Gene Name SUGP2
UniProt ID
SUGP2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1X4P
Pfam ID
PF01585 ; PF01805
Sequence
MAARRITQETFDAVLQEKAKRYHMDASGEAVSETLQFKAQDLLRAVPRSRAEMYDDVHSD
GRYSLSGSVAHSRDAGREGLRSDVFPGPSFRSSNPSISDDSYFRKECGRDLEFSHSDSRD
QVIGHRKLGHFRSQDWKFALRGSWEQDFGHPVSQESSWSQEYSFGPSAVLGDFGSSRLIE
KECLEKESRDYDVDHPGEADSVLRGGSQVQARGRALNIVDQEGSLLGKGETQGLLTAKGG
VGKLVTLRNVSTKKIPTVNRITPKTQGTNQIQKNTPSPDVTLGTNPGTEDIQFPIQKIPL
GLDLKNLRLPRRKMSFDIIDKSDVFSRFGIEIIKWAGFHTIKDDIKFSQLFQTLFELETE
TCAKMLASFKCSLKPEHRDFCFFTIKFLKHSALKTPRVDNEFLNMLLDKGAVKTKNCFFE
IIKPFDKYIMRLQDRLLKSVTPLLMACNAYELSVKMKTLSNPLDLALALETTNSLCRKSL
ALLGQTFSLASSFRQEKILEAVGLQDIAPSPAAFPNFEDSTLFGREYIDHLKAWLVSSGC
PLQVKKAEPEPMREEEKMIPPTKPEIQAKAPSSLSDAVPQRADHRVVGTIDQLVKRVIEG
SLSPKERTLLKEDPAYWFLSDENSLEYKYYKLKLAEMQRMSENLRGADQKPTSADCAVRA
MLYSRAVRNLKKKLLPWQRRGLLRAQGLRGWKARRATTGTQTLLSSGTRLKHHGRQAPGL
SQAKPSLPDRNDAAKDCPPDPVGPSPQDPSLEASGPSPKPAGVDISEAPQTSSPCPSADI
DMKTMETAEKLARFVAQVGPEIEQFSIENSTDNPDLWFLHDQNSSAFKFYRKKVFELCPS
ICFTSSPHNLHTGGGDTTGSQESPVDLMEGEAEFEDEPPPREAELESPEVMPEEEDEDDE
DGGEEAPAPGGAGKSEGSTPADGLPGEAAEDDLAGAPALSQASSGTCFPRKRISSKSLKV
GMIPAPKRVCLIQEPKVHEPVRIAYDRPRGRPMSKKKKPKDLDFAQQKLTDKNLGFQMLQ
KMGWKEGHGLGSLGKGIREPVSVGTPSEGEGLGADGQEHKEDTFDVFRQRMMQMYRHKRA
NK
Function May play a role in mRNA splicing.
Tissue Specificity Detected in adult testis, and in fetal brain and kidney.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of SURP and G-patch domain-containing protein 2 (SUGP2). [1]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of SURP and G-patch domain-containing protein 2 (SUGP2). [11]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [2]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [3]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [5]
Temozolomide DMKECZD Approved Temozolomide increases the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [6]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [7]
Decitabine DMQL8XJ Approved Decitabine affects the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [4]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [9]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [10]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [12]
AM251 DMTAWHL Investigative AM251 decreases the expression of SURP and G-patch domain-containing protein 2 (SUGP2). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
3 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
4 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
8 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
9 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
10 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
11 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Cannabinoid derivatives induce cell death in pancreatic MIA PaCa-2 cells via a receptor-independent mechanism. FEBS Lett. 2006 Mar 20;580(7):1733-9.