General Information of Drug Off-Target (DOT) (ID: OTQ8KDFX)

DOT Name ATPase GET3 (GET3)
Synonyms
EC 3.6.-.-; Arsenical pump-driving ATPase; Arsenite-stimulated ATPase; Guided entry of tail-anchored proteins factor 3, ATPase; Transmembrane domain recognition complex 40 kDa ATPase subunit; hARSA-I; hASNA-I
Gene Name GET3
Related Disease
Parkinson disease ( )
UniProt ID
GET3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6SO5; 8CQZ; 8CR1; 8CR2
EC Number
3.6.-.-
Pfam ID
PF02374
Sequence
MAAGVAGWGVEAEEFEDAPDVEPLEPTLSNIIEQRSLKWIFVGGKGGVGKTTCSCSLAVQ
LSKGRESVLIISTDPAHNISDAFDQKFSKVPTKVKGYDNLFAMEIDPSLGVAELPDEFFE
EDNMLSMGKKMMQEAMSAFPGIDEAMSYAEVMRLVKGMNFSVVVFDTAPTGHTLRLLNFP
TIVERGLGRLMQIKNQISPFISQMCNMLGLGDMNADQLASKLEETLPVIRSVSEQFKDPE
QTTFICVCIAEFLSLYETERLIQELAKCKIDTHNIIVNQLVFPDPEKPCKMCEARHKIQA
KYLDQMEDLYEDFHIVKLPLLPHEVRGADKVNTFSALLLEPYKPPSAQ
Function
ATPase required for the post-translational delivery of tail-anchored (TA) proteins to the endoplasmic reticulum. Recognizes and selectively binds the transmembrane domain of TA proteins in the cytosol. This complex then targets to the endoplasmic reticulum by membrane-bound receptors GET1/WRB and CAMLG/GET2, where the tail-anchored protein is released for insertion. This process is regulated by ATP binding and hydrolysis. ATP binding drives the homodimer towards the closed dimer state, facilitating recognition of newly synthesized TA membrane proteins. ATP hydrolysis is required for insertion. Subsequently, the homodimer reverts towards the open dimer state, lowering its affinity for the GET1-CAMLG receptor, and returning it to the cytosol to initiate a new round of targeting. May be involved in insulin signaling.
Tissue Specificity Expressed in the epithelial cells of the liver, kidney, and stomach wall, in the adrenal medulla, in the islet cells of the pancreas, in the red pulp of the spleen, and in cardiac and skeletal muscle.
KEGG Pathway
Protein export (hsa03060 )
Reactome Pathway
Insertion of tail-anchored proteins into the endoplasmic reticulum membrane (R-HSA-9609523 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Parkinson disease DISQVHKL Limited Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved ATPase GET3 (GET3) affects the response to substance of Cisplatin. [9]
------------------------------------------------------------------------------------
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of ATPase GET3 (GET3). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of ATPase GET3 (GET3). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of ATPase GET3 (GET3). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of ATPase GET3 (GET3). [5]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of ATPase GET3 (GET3). [6]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of ATPase GET3 (GET3). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of ATPase GET3 (GET3). [7]
------------------------------------------------------------------------------------

References

1 A systematic screening to identify de novo mutations causing sporadic early-onset Parkinson's disease.Hum Mol Genet. 2015 Dec 1;24(23):6711-20. doi: 10.1093/hmg/ddv376. Epub 2015 Sep 11.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Retinoic acid-induced downmodulation of telomerase activity in human cancer cells. Exp Mol Pathol. 2005 Oct;79(2):108-17.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Differential expression and response to arsenic stress of MRPs and ASAN1 determine sensitivity of classical multidrug-resistant leukemia cells to arsenic trioxide. Leuk Res. 2016 Nov;50:116-122. doi: 10.1016/j.leukres.2016.10.003. Epub 2016 Oct 3.
7 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
8 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
9 ASNA-1 activity modulates sensitivity to cisplatin. Cancer Res. 2010 Dec 15;70(24):10321-8. doi: 10.1158/0008-5472.CAN-10-1548. Epub 2010 Oct 21.