General Information of Drug Off-Target (DOT) (ID: OTQBZWSE)

DOT Name Tyrosine-protein phosphatase non-receptor type 21 (PTPN21)
Synonyms EC 3.1.3.48; Protein-tyrosine phosphatase D1
Gene Name PTPN21
Related Disease
Graves disease ( )
Schizophrenia ( )
UniProt ID
PTN21_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8GVL; 8GVV; 8GWH; 8GXE
EC Number
3.1.3.48
Pfam ID
PF09380 ; PF00373 ; PF09379 ; PF00102
Sequence
MPLPFGLKLKRTRRYTVSSKSCLVARIQLLNNEFVEFTLSVESTGQESLEAVAQRLELRE
VTYFSLWYYNKQNQRRWVDLEKPLKKQLDKYALEPTVYFGVVFYVPSVSQLQQEITRYQY
YLQLKKDILEGSIPCTLEQAIQLAGLAVQADFGDFDQYESQDFLQKFALFPVGWLQDEKV
LEEATQKVALLHQKYRGLTAPDAEMLYMQEVERMDGYGEESYPAKDSQGSDISIGACLEG
IFVKHKNGRHPVVFRWHDIANMSHNKSFFALELANKEETIQFQTEDMETAKYIWRLCVAR
HKFYRLNQCNLQTQTVTVNPIRRRSSSRMSLPKPQPYVMPPPPQLHYNGHYTEPYASSQD
NLFVPNQNGYYCHSQTSLDRAQIDLNGRIRNGSVYSAHSTNSLNNPQPYLQPSPMSSNPS
ITGSDVMRPDYLPSHRHSAVIPPSYRPTPDYETVMKQLNRGLVHAERQSHSLRNLNIGSS
YAYSRPAALVYSQPEIREHAQLPSPAAAHCPFSLSYSFHSPSPYPYPAERRPVVGAVSVP
ELTNAQLQAQDYPSPNIMRTQVYRPPPPYPPPRPANSTPDLSRHLYISSSNPDLITRRVH
HSVQTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLSHGLEGLRLKERTLSAS
AAEVAPRAVSVGSQPSVFTERTQREGPEEAEGLRYGHKKSLSDATMLIHSSEEEEDEDFE
EESGARAPPARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRMMDSSPVRTT
AEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSLKKRPVSDLLSGKKNIVEGLPPLGGMK
KTRVDAKKIGPLKLAALNGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY
ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPTKENNTGYINASHIKVSV
SGIEWDYIATQGPLQNTCQDFWQMVWEQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNT
VTYGRFKITTRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPEDLKGFLSY
LEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRTGVVILSEIMIACLEHNEVLDIPRVL
DMLRQQRMMLVQTLCQYTFVYRVLIQFLKSSRLI

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Graves disease DISU4KOQ Strong Biomarker [1]
Schizophrenia DISSRV2N Strong Genetic Variation [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [3]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [9]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [10]
Testosterone DM7HUNW Approved Testosterone increases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [10]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [11]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [12]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [13]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [14]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [16]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Tyrosine-protein phosphatase non-receptor type 21 (PTPN21). [18]
------------------------------------------------------------------------------------

References

1 Use of Tag single nucleotide polymorphisms (SNPs) to screen PTPN21: no association with Graves' disease.Clin Endocrinol (Oxf). 2006 Sep;65(3):380-4. doi: 10.1111/j.1365-2265.2006.02608.x.
2 Two non-synonymous markers in PTPN21, identified by genome-wide association study data-mining and replication, are associated with schizophrenia.Schizophr Res. 2011 Sep;131(1-3):43-51. doi: 10.1016/j.schres.2011.06.023. Epub 2011 Jul 14.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
9 Endoplasmic reticulum stress contributes to arsenic trioxide-induced intrinsic apoptosis in human umbilical and bone marrow mesenchymal stem cells. Environ Toxicol. 2016 Mar;31(3):314-28.
10 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
11 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
12 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
13 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
14 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
15 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
18 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.