General Information of Drug Off-Target (DOT) (ID: OTQYYX0P)

DOT Name Complement factor I (CFI)
Synonyms EC 3.4.21.45; C3B/C4B inactivator
Gene Name CFI
Related Disease
Atypical hemolytic uremic syndrome ( )
Atypical hemolytic-uremic syndrome with I factor anomaly ( )
Complement factor I deficiency ( )
Doyne honeycomb retinal dystrophy ( )
Age related macular degeneration 13 ( )
UniProt ID
CFAI_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2XRC; 5O32
EC Number
3.4.21.45
Pfam ID
PF21286 ; PF21287 ; PF00057 ; PF00530 ; PF00089
Sequence
MKLLHVFLLFLCFHLRFCKVTYTSQEDLVEKKCLAKKYTHLSCDKVFCQPWQRCIEGTCV
CKLPYQCPKNGTAVCATNRRSFPTYCQQKSLECLHPGTKFLNNGTCTAEGKFSVSLKHGN
TDSEGIVEVKLVDQDKTMFICKSSWSMREANVACLDLGFQQGADTQRRFKLSDLSINSTE
CLHVHCRGLETSLAECTFTKRRTMGYQDFADVVCYTQKADSPMDDFFQCVNGKYISQMKA
CDGINDCGDQSDELCCKACQGKGFHCKSGVCIPSQYQCNGEVDCITGEDEVGCAGFASVT
QEETEILTADMDAERRRIKSLLPKLSCGVKNRMHIRRKRIVGGKRAQLGDLPWQVAIKDA
SGITCGGIYIGGCWILTAAHCLRASKTHRYQIWTTVVDWIHPDLKRIVIEYVDRIIFHEN
YNAGTYQNDIALIEMKKDGNKKDCELPRSIPACVPWSPYLFQPNDTCIVSGWGREKDNER
VFSLQWGEVKLISNCSKFYGNRFYEKEMECAGTYDGSIDACKGDSGGPLVCMDANNVTYV
WGVVSWGENCGKPEFPGVYTKVANYFDWISYHVGRPFISQYNV
Function
Trypsin-like serine protease that plays an essential role in regulating the immune response by controlling all complement pathways. Inhibits these pathways by cleaving three peptide bonds in the alpha-chain of C3b and two bonds in the alpha-chain of C4b thereby inactivating these proteins. Essential cofactors for these reactions include factor H and C4BP in the fluid phase and membrane cofactor protein/CD46 and CR1 on cell surfaces. The presence of these cofactors on healthy cells allows degradation of deposited C3b by CFI in order to prevent undesired complement activation, while in apoptotic cells or microbes, the absence of such cofactors leads to C3b-mediated complement activation and subsequent opsonization.
Tissue Specificity Expressed in the liver by hepatocytes . Also present in other cells such as monocytes, fibroblasts or keratinocytes .
KEGG Pathway
Complement and coagulation cascades (hsa04610 )
Staphylococcus aureus infection (hsa05150 )
Reactome Pathway
Regulation of Complement cascade (R-HSA-977606 )

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Atypical hemolytic uremic syndrome DIS6FUDJ Definitive Autosomal dominant [1]
Atypical hemolytic-uremic syndrome with I factor anomaly DIS5W0HW Strong Autosomal dominant [2]
Complement factor I deficiency DISW8HB5 Strong Autosomal recessive [3]
Doyne honeycomb retinal dystrophy DISKFNCT Supportive Autosomal dominant [4]
Age related macular degeneration 13 DISSMEV1 Limited Autosomal dominant [5]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cyclophosphamide DM4O2Z7 Approved Complement factor I (CFI) affects the response to substance of Cyclophosphamide. [23]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Complement factor I (CFI). [6]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Complement factor I (CFI). [7]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Complement factor I (CFI). [8]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Complement factor I (CFI). [9]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Complement factor I (CFI). [10]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Complement factor I (CFI). [11]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Complement factor I (CFI). [12]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Complement factor I (CFI). [13]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Complement factor I (CFI). [14]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Complement factor I (CFI). [15]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Complement factor I (CFI). [16]
Diphenylpyraline DMW4X37 Approved Diphenylpyraline increases the expression of Complement factor I (CFI). [17]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Complement factor I (CFI). [18]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Complement factor I (CFI). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Complement factor I (CFI). [21]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Complement factor I (CFI). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Complement factor I (CFI). [19]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Mutations in complement factor I predispose to development of atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2005 Jul;16(7):2150-5. doi: 10.1681/ASN.2005010103. Epub 2005 May 25.
3 Genetic, molecular and functional analyses of complement factor I deficiency. Eur J Immunol. 2009 Jan;39(1):310-23. doi: 10.1002/eji.200838702.
4 Rare genetic variants in Tunisian Jewish patients suffering from age-related macular degeneration. J Med Genet. 2015 Jul;52(7):484-92. doi: 10.1136/jmedgenet-2015-103130. Epub 2015 May 18.
5 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
6 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
7 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
8 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
9 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
10 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
11 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
12 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
13 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
14 A comprehensive analysis of Wnt/beta-catenin signaling pathway-related genes and crosstalk pathways in the treatment of As2O3 in renal cancer. Ren Fail. 2018 Nov;40(1):331-339.
15 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
16 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
17 Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: Effects on inflammatory lung markers. J Allergy Clin Immunol. 2016 Dec;138(6):1690-1700. doi: 10.1016/j.jaci.2016.02.038. Epub 2016 Apr 24.
18 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
19 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
20 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
21 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
22 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
23 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.