General Information of Drug Off-Target (DOT) (ID: OTWYK1I1)

DOT Name Coiled-coil domain-containing protein 160 (CCDC160)
Gene Name CCDC160
UniProt ID
CC160_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MDARRKHWKENMFTPFFSAQDVLEETSEPESSSEQTTADSSKGMEEIYNLSSRKFQEESK
FKRKKYIFQLNEIEQEQNLRENKRNISKNETDTNSASYESSNVDVTTEESFNSTEDNSTC
STDNLPALLRQDIRKKFMERMSPKLCLNLLNEELEELNMKYRKIEEEFENAEKELLHYKK
EIFTKPLNFQETETDASKSDYELQALRNDLSEKATNVKNLSEQLQQAKEVIHKLNLENRN
LKEAVRKLKHQTEVGNVLLKEEMKSYYELEMAKIRGELSVIKNELRTEKTLQARNNRALE
LLRKYYASSMVTSSSILDHFTGDFF

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Coiled-coil domain-containing protein 160 (CCDC160). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Coiled-coil domain-containing protein 160 (CCDC160). [5]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Coiled-coil domain-containing protein 160 (CCDC160). [2]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Coiled-coil domain-containing protein 160 (CCDC160). [3]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Coiled-coil domain-containing protein 160 (CCDC160). [4]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Coiled-coil domain-containing protein 160 (CCDC160). [6]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Coiled-coil domain-containing protein 160 (CCDC160). [7]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
3 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
4 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
5 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
6 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
7 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.