General Information of Drug Off-Target (DOT) (ID: OTX6K345)

DOT Name Glutamate receptor ionotropic, kainate 3 (GRIK3)
Synonyms GluK3; Excitatory amino acid receptor 5; EAA5; Glutamate receptor 7; GluR-7; GluR7
Gene Name GRIK3
UniProt ID
GRIK3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01094 ; PF00060 ; PF10613
Sequence
MTAPWRRLRSLVWEYWAGLLVCAFWIPDSRGMPHVIRIGGIFEYADGPNAQVMNAEEHAF
RFSANIINRNRTLLPNTTLTYDIQRIHFHDSFEATKKACDQLALGVVAIFGPSQGSCTNA
VQSICNALEVPHIQLRWKHHPLDNKDTFYVNLYPDYASLSHAILDLVQYLKWRSATVVYD
DSTGLIRLQELIMAPSRYNIRLKIRQLPIDSDDSRPLLKEMKRGREFRIIFDCSHTMAAQ
ILKQAMAMGMMTEYYHFIFTTLDLYALDLEPYRYSGVNLTGFRILNVDNPHVSAIVEKWS
MERLQAAPRSESGLLDGVMMTDAALLYDAVHIVSVCYQRAPQMTVNSLQCHRHKAWRFGG
RFMNFIKEAQWEGLTGRIVFNKTSGLRTDFDLDIISLKEDGLEKVGVWSPADGLNITEVA
KGRGPNVTDSLTNRSLIVTTVLEEPFVMFRKSDRTLYGNDRFEGYCIDLLKELAHILGFS
YEIRLVEDGKYGAQDDKGQWNGMVKELIDHKADLAVAPLTITHVREKAIDFSKPFMTLGV
SILYRKPNGTNPSVFSFLNPLSPDIWMYVLLAYLGVSCVLFVIARFSPYEWYDAHPCNPG
SEVVENNFTLLNSFWFGMGSLMQQGSELMPKALSTRIIGGIWWFFTLIIISSYTANLAAF
LTVERMESPIDSADDLAKQTKIEYGAVKDGATMTFFKKSKISTFEKMWAFMSSKPSALVK
NNEEGIQRALTADYALLMESTTIEYVTQRNCNLTQIGGLIDSKGYGIGTPMGSPYRDKIT
IAILQLQEEDKLHIMKEKWWRGSGCPEEENKEASALGIQKIGGIFIVLAAGLVLSVLVAV
GEFVYKLRKTAEREQRSFCSTVADEIRFSLTCQRRVKHKPQPPMMVKTDAVINMHTFNDR
RLPGKDSMACSTSLAPVFP
Function
Receptor for glutamate that functions as a ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. The postsynaptic actions of Glu are mediated by a variety of receptors that are named according to their selective agonists. This receptor binds domoate > kainate >> L-glutamate = quisqualate >> AMPA = NMDA.
KEGG Pathway
Neuroactive ligand-receptor interaction (hsa04080 )
Glutamatergic sy.pse (hsa04724 )
Reactome Pathway
Presynaptic function of Kainate receptors (R-HSA-500657 )
Activation of Ca-permeable Kainate Receptor (R-HSA-451308 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Glutamate receptor ionotropic, kainate 3 (GRIK3). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Glutamate receptor ionotropic, kainate 3 (GRIK3). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Glutamate receptor ionotropic, kainate 3 (GRIK3). [10]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Estradiol DMUNTE3 Approved Estradiol increases the expression of Glutamate receptor ionotropic, kainate 3 (GRIK3). [2]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Glutamate receptor ionotropic, kainate 3 (GRIK3). [3]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Glutamate receptor ionotropic, kainate 3 (GRIK3). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Glutamate receptor ionotropic, kainate 3 (GRIK3). [6]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Glutamate receptor ionotropic, kainate 3 (GRIK3). [7]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Glutamate receptor ionotropic, kainate 3 (GRIK3). [8]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Glutamate receptor ionotropic, kainate 3 (GRIK3). [9]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Glutamate receptor ionotropic, kainate 3 (GRIK3). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
3 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
4 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
5 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
6 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
7 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
8 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.