General Information of Drug Off-Target (DOT) (ID: OTXV6ETF)

DOT Name Gap junction alpha-3 protein (GJA3)
Synonyms Connexin-46; Cx46
Gene Name GJA3
Related Disease
Cataract 14 multiple types ( )
Early-onset nuclear cataract ( )
Early-onset posterior polar cataract ( )
Pulverulent cataract ( )
UniProt ID
CXA3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00029
Sequence
MGDWSFLGRLLENAQEHSTVIGKVWLTVLFIFRILVLGAAAEDVWGDEQSDFTCNTQQPG
CENVCYDRAFPISHIRFWALQIIFVSTPTLIYLGHVLHIVRMEEKKKEREEEEQLKRESP
SPKEPPQDNPSSRDDRGRVRMAGALLRTYVFNIIFKTLFEVGFIAGQYFLYGFELKPLYR
CDRWPCPNTVDCFISRPTEKTIFIIFMLAVACASLLLNMLEIYHLGWKKLKQGVTSRLGP
DASEAPLGTADPPPLPPSSRPPAVAIGFPPYYAHTAAPLGQARAVGYPGAPPPAADFKLL
ALTEARGKGQSAKLYNGHHHLLMTEQNWANQAAERQPPALKAYPAASTPAAPSPVGSSSP
PLAHEAEAGAAPLLLDGSGSSLEGSALAGTPEEEEQAVTTAAQMHQPPLPLGDPGRASKA
SRASSGRARPEDLAI
Function
Structural component of lens fiber gap junctions. Gap junctions are dodecameric channels that connect the cytoplasm of adjoining cells. They are formed by the docking of two hexameric hemichannels, one from each cell membrane. Small molecules and ions diffuse from one cell to a neighboring cell via the central pore.
Reactome Pathway
Gap junction assembly (R-HSA-190861 )

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cataract 14 multiple types DISVRJYC Definitive Autosomal dominant [1]
Early-onset nuclear cataract DISGIHUY Supportive Autosomal dominant [2]
Early-onset posterior polar cataract DISJFK9W Supportive Autosomal dominant [3]
Pulverulent cataract DISMJ2AH Supportive Autosomal dominant [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Gap junction alpha-3 protein (GJA3). [5]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Gap junction alpha-3 protein (GJA3). [13]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Gap junction alpha-3 protein (GJA3). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Gap junction alpha-3 protein (GJA3). [7]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Gap junction alpha-3 protein (GJA3). [8]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Gap junction alpha-3 protein (GJA3). [9]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Gap junction alpha-3 protein (GJA3). [10]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Gap junction alpha-3 protein (GJA3). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Gap junction alpha-3 protein (GJA3). [11]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Gap junction alpha-3 protein (GJA3). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Gap junction alpha-3 protein (GJA3). [14]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Gap junction alpha-3 protein (GJA3). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Further evidence of autosomal dominant congenital zonular pulverulent cataracts linked to 13q11 (CZP3) and a novel mutation in connexin 46 (GJA3). Hum Genet. 2000 Feb;106(2):206-9. doi: 10.1007/s004390051029.
2 Two novel mutations of connexin genes in Chinese families with autosomal dominant congenital nuclear cataract. Br J Ophthalmol. 2005 Nov;89(11):1535-7. doi: 10.1136/bjo.2005.075184.
3 Molecular analysis of cataract families in India: new mutations in the CRYBB2 and GJA3 genes and rare polymorphisms. Mol Vis. 2010 Sep 10;16:1837-47.
4 A novel mutation in GJA3 associated with congenital Coppock-like cataract in a large Chinese family. Mol Vis. 2012;18:2114-8. Epub 2012 Jul 26.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
9 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
10 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
11 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
12 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
13 Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int J Oncol. 2012 Jul;41(1):369-77.
14 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
15 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.