General Information of Drug Off-Target (DOT) (ID: OTZQIUHQ)

DOT Name UPF0500 protein C1orf216 (C1ORF216)
Gene Name C1ORF216
UniProt ID
CA216_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15546
Sequence
MFAIQPGLAEGGQFLGDPPPGLCQPELQPDSNSNFMASAKDANENWHGMPGRVEPILRRS
SSESPSDNQAFQAPGSPEEGVRSPPEGAEIPGAEPEKMGGAGTVCSPLEDNGYASSSLSI
DSRSSSPEPACGTPRGPGPPDPLLPSVAQAVQHLQVQERYKEQEKEKHHVHLVMYRRLAL
LQWIRGLQHQLIDQQARLQESFDTILDNRKELIRCLQQRAAPSRPQDQA

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of UPF0500 protein C1orf216 (C1ORF216). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of UPF0500 protein C1orf216 (C1ORF216). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of UPF0500 protein C1orf216 (C1ORF216). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of UPF0500 protein C1orf216 (C1ORF216). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of UPF0500 protein C1orf216 (C1ORF216). [5]
Quercetin DM3NC4M Approved Quercetin increases the expression of UPF0500 protein C1orf216 (C1ORF216). [6]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of UPF0500 protein C1orf216 (C1ORF216). [7]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of UPF0500 protein C1orf216 (C1ORF216). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of UPF0500 protein C1orf216 (C1ORF216). [9]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of UPF0500 protein C1orf216 (C1ORF216). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
9 Inter- and intra-laboratory study to determine the reproducibility of toxicogenomics datasets. Toxicology. 2011 Nov 28;290(1):50-8.
10 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.