General Information of Drug Off-Target (DOT) (ID: OTZTQIZO)

DOT Name Toll-like receptor 1 (TLR1)
Synonyms Toll/interleukin-1 receptor-like protein; TIL; CD antigen CD281
Gene Name TLR1
UniProt ID
TLR1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1FYV; 2Z7X; 6NIH; 7NT7; 7NUW; 7NUX
Pfam ID
PF13855 ; PF01463 ; PF01582
Sequence
MTSIFHFAIIFMLILQIRIQLSEESEFLVDRSKNGLIHVPKDLSQKTTILNISQNYISEL
WTSDILSLSKLRILIISHNRIQYLDISVFKFNQELEYLDLSHNKLVKISCHPTVNLKHLD
LSFNAFDALPICKEFGNMSQLKFLGLSTTHLEKSSVLPIAHLNISKVLLVLGETYGEKED
PEGLQDFNTESLHIVFPTNKEFHFILDVSVKTVANLELSNIKCVLEDNKCSYFLSILAKL
QTNPKLSNLTLNNIETTWNSFIRILQLVWHTTVWYFSISNVKLQGQLDFRDFDYSGTSLK
ALSIHQVVSDVFGFPQSYIYEIFSNMNIKNFTVSGTRMVHMLCPSKISPFLHLDFSNNLL
TDTVFENCGHLTELETLILQMNQLKELSKIAEMTTQMKSLQQLDISQNSVSYDEKKGDCS
WTKSLLSLNMSSNILTDTIFRCLPPRIKVLDLHSNKIKSIPKQVVKLEALQELNVAFNSL
TDLPGCGSFSSLSVLIIDHNSVSHPSADFFQSCQKMRSIKAGDNPFQCTCELGEFVKNID
QVSSEVLEGWPDSYKCDYPESYRGTLLKDFHMSELSCNITLLIVTIVATMLVLAVTVTSL
CSYLDLPWYLRMVCQWTQTRRRARNIPLEELQRNLQFHAFISYSGHDSFWVKNELLPNLE
KEGMQICLHERNFVPGKSIVENIITCIEKSYKSIFVLSPNFVQSEWCHYELYFAHHNLFH
EGSNSLILILLEPIPQYSIPSSYHKLKSLMARRTYLEWPKEKSKRGLFWANLRAAINIKL
TEQAKK
Function
Participates in the innate immune response to microbial agents. Specifically recognizes diacylated and triacylated lipopeptides. Cooperates with TLR2 to mediate the innate immune response to bacterial lipoproteins or lipopeptides. Forms the activation cluster TLR2:TLR1:CD14 in response to triacylated lipopeptides, this cluster triggers signaling from the cell surface and subsequently is targeted to the Golgi in a lipid-raft dependent pathway. Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response.
Tissue Specificity Ubiquitous. Highly expressed in spleen, ovary, peripheral blood leukocytes, thymus and small intestine.
KEGG Pathway
Toll-like receptor sig.ling pathway (hsa04620 )
Tuberculosis (hsa05152 )
Reactome Pathway
Beta defensins (R-HSA-1461957 )
MyD88 (R-HSA-166058 )
Toll Like Receptor TLR1 (R-HSA-168179 )
MyD88 deficiency (TLR2/4) (R-HSA-5602498 )
IRAK4 deficiency (TLR2/4) (R-HSA-5603041 )
Regulation of TLR by endogenous ligand (R-HSA-5686938 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
ER-Phagosome pathway (R-HSA-1236974 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Toll-like receptor 1 (TLR1). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Toll-like receptor 1 (TLR1). [10]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Toll-like receptor 1 (TLR1). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Toll-like receptor 1 (TLR1). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Toll-like receptor 1 (TLR1). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Toll-like receptor 1 (TLR1). [5]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of Toll-like receptor 1 (TLR1). [6]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Toll-like receptor 1 (TLR1). [7]
Rifampicin DM5DSFZ Approved Rifampicin increases the expression of Toll-like receptor 1 (TLR1). [8]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Toll-like receptor 1 (TLR1). [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Toll-like receptor 1 (TLR1). [11]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Toll-like receptor 1 (TLR1). [12]
Butanoic acid DMTAJP7 Investigative Butanoic acid increases the expression of Toll-like receptor 1 (TLR1). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
5 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
6 Transcriptomics and methylomics of CD4-positive T cells in arsenic-exposed women. Arch Toxicol. 2017 May;91(5):2067-2078. doi: 10.1007/s00204-016-1879-4. Epub 2016 Nov 12.
7 Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumour Biol. 2011 Oct;32(5):965-76.
8 Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug Metab Pharmacokinet. 2014;29(4):333-40.
9 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
10 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
11 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
12 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
13 Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the presence of butyric acid. FEMS Immunol Med Microbiol. 2004 Jul 1;41(3):227-35. doi: 10.1016/j.femsim.2004.03.006.