General Information of Drug Off-Target (DOT) (ID: OTZX5BP6)

DOT Name Ras-related protein Rab-28 (RAB28)
Gene Name RAB28
Related Disease
Cone-rod dystrophy 18 ( )
RAB28-related retinopathy ( )
Cone dystrophy ( )
Cone-rod dystrophy ( )
Cone-rod dystrophy 2 ( )
UniProt ID
RAB28_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2HXS; 3E5H
Pfam ID
PF00071
Sequence
MSDSEEESQDRQLKIVVLGDGASGKTSLTTCFAQETFGKQYKQTIGLDFFLRRITLPGNL
NVTLQIWDIGGQTIGGKMLDKYIYGAQGVLLVYDITNYQSFENLEDWYTVVKKVSEESET
QPLVALVGNKIDLEHMRTIKPEKHLRFCQENGFSSHFVSAKTGDSVFLCFQKVAAEILGI
KLNKAEIEQSQRVVKADIVNYNQEPMSRTVNPPRSSMCAVQ
Tissue Specificity
Isoform S is detected in most tissues investigated: cortex, liver, kidney, skeletal muscle, adipose tissue, testis, urothelium, lung, bone marrow and retinal pigment epithelium (RPE). Isoform L 2 is widely and abundantly expressed all tissues. Isoform 3 is highly expressed in heart, lung, bone marrow, retina, brain, and RPE.

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cone-rod dystrophy 18 DISNEPML Definitive Autosomal recessive [1]
RAB28-related retinopathy DIS4PHLJ Definitive Autosomal recessive [2]
Cone dystrophy DIS7SAZZ Strong CausalMutation [1]
Cone-rod dystrophy DISY9RWN Supportive Autosomal dominant [3]
Cone-rod dystrophy 2 DISX2RWY Limited Biomarker [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Ras-related protein Rab-28 (RAB28). [5]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Ras-related protein Rab-28 (RAB28). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Ras-related protein Rab-28 (RAB28). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Ras-related protein Rab-28 (RAB28). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Ras-related protein Rab-28 (RAB28). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Ras-related protein Rab-28 (RAB28). [10]
------------------------------------------------------------------------------------

References

1 New mutations in the RAB28 gene in 2 Spanish families with cone-rod dystrophy. JAMA Ophthalmol. 2015 Feb;133(2):133-9. doi: 10.1001/jamaophthalmol.2014.4266.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Mutations in RAB28, encoding a farnesylated small GTPase, are associated with autosomal-recessive cone-rod dystrophy. Am J Hum Genet. 2013 Jul 11;93(1):110-7. doi: 10.1016/j.ajhg.2013.05.005. Epub 2013 Jun 6.
4 Homozygosity mapping and whole-genome sequencing reveals a deep intronic PROM1 mutation causing cone-rod dystrophy by pseudoexon activation.Eur J Hum Genet. 2016 Mar;24(3):459-62. doi: 10.1038/ejhg.2015.144. Epub 2015 Jul 8.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Real-time monitoring of cisplatin-induced cell death. PLoS One. 2011;6(5):e19714. doi: 10.1371/journal.pone.0019714. Epub 2011 May 16.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.