General Information of Disease (ID: DISX2RWY)

Disease Name Cone-rod dystrophy 2
Synonyms
cone-rod dystrophy; cone-rod retinal dystrophy; retinal cone-rod dystrophy; cone-rod retinal dystrophy-2; CRD2; cone-rod dystrophy caused by mutation in CRX; CORD2; cone-rod dystrophy type 2; RCRD2; retinal cone-rod dystrophy 2; CRX cone-rod dystrophy; cone-rod retinal dystrophy 2; cone-rod dystrophy 2
Definition Any cone-rod dystrophy in which the cause of the disease is a mutation in the CRX gene.
Disease Hierarchy
DISY9RWN: Cone-rod dystrophy
DISCGPY8: Retinitis pigmentosa
DISX2RWY: Cone-rod dystrophy 2
Disease Identifiers
MONDO ID
MONDO_0007362
MESH ID
D000071700
UMLS CUI
C3489532
OMIM ID
120970
MedGen ID
483485

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 30 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ADAMTS4 TTYG6BU Limited Biomarker [1]
NRG4 TTWAGKJ Limited Genetic Variation [2]
PROM1 TTXMZ81 Limited Biomarker [3]
ABCA4 TTLB52K Strong Genetic Variation [4]
ADAM9 TTTYQNS Strong Genetic Variation [5]
C9orf72 TTA4SHR Strong Genetic Variation [6]
CACNA1F TTJ0SO4 Strong GermlineCausalMutation [7]
CD6 TTMF6KC Strong Biomarker [8]
CEP250 TTPOA6U Strong Genetic Variation [9]
CNGA3 TTW0QOV Strong Genetic Variation [10]
GAP43 TTSGLN5 Strong Altered Expression [11]
GUCY2D TTWNFC2 Strong Genetic Variation [12]
HSD11B1 TTN7BL9 Strong Genetic Variation [13]
LYVE1 TTG8DNU Strong Altered Expression [14]
NTF3 TTZHKV9 Strong Biomarker [15]
RPGR TTHBDA9 Strong Genetic Variation [16]
SMN1 TT8QL6X Strong Biomarker [17]
TARDBP TT9RZ03 Strong Genetic Variation [18]
TST TT51OTS Strong Genetic Variation [19]
VCP TTHNLSB Strong Genetic Variation [20]
AMD1 TTBFROQ Definitive Biomarker [21]
CEP290 TT3XBOV Definitive Genetic Variation [22]
DPYSL2 TTZCW3T Definitive Biomarker [23]
GRIA1 TTVPQTF Definitive Biomarker [24]
GRIA2 TTWM461 Definitive Biomarker [25]
GRM2 TTXJ47W Definitive Biomarker [25]
KCNQ5 TTWVL5Q Definitive Altered Expression [26]
LINGO1 TTZYQ80 Definitive Biomarker [27]
NISCH TT789FN Definitive Biomarker [28]
RGMA TTURJV4 Definitive Biomarker [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC25A37 DTLBGTZ Definitive Biomarker [30]
SLC35A1 DTVZIRG Definitive Biomarker [31]
------------------------------------------------------------------------------------
This Disease Is Related to 2 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
NMNAT1 DE4D159 Strong Genetic Variation [32]
ASNS DEXISVQ Definitive Biomarker [33]
------------------------------------------------------------------------------------
This Disease Is Related to 71 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ADAMTS3 OT2U6VF5 Limited Biomarker [1]
ALMS1 OTW66JKS Limited Genetic Variation [34]
CDHR1 OT1ORXCM Limited Genetic Variation [3]
PRPH2 OTNH2G5H Limited Genetic Variation [35]
RAB28 OTZX5BP6 Limited Biomarker [36]
RIMS1 OT10T7CK Limited Genetic Variation [37]
RPGRIP1 OTABESO9 Limited Biomarker [38]
TTLL5 OTUKOVEM Disputed GermlineCausalMutation [39]
GNB1 OTLL7L74 moderate Genetic Variation [40]
SP4 OTWB30IZ moderate Genetic Variation [40]
AIPL1 OT4VBD78 Strong Altered Expression [41]
AQP4 OTA9MYD5 Strong Altered Expression [42]
ATF6 OTAFHAVI Strong GermlineCausalMutation [43]
ATXN7 OTL3YF1H Strong Genetic Variation [44]
CACNA2D4 OTVYNX7N Strong GermlineCausalMutation [45]
CERKL OTG4YGBR Strong Genetic Variation [46]
CLTA OTLHOXMQ Strong Biomarker [47]
CNNM4 OTUXJRM1 Strong Genetic Variation [48]
CRB1 OTXYUNG0 Strong Genetic Variation [49]
DRAM2 OTBOCZH8 Strong GermlineCausalMutation [50]
EYS OT0NBPL5 Strong Genetic Variation [51]
GUCA1B OT85S0J3 Strong Genetic Variation [52]
GUCA2A OTUSF75G Strong Genetic Variation [53]
H6PD OTO7TNDD Strong Genetic Variation [13]
IFT81 OTB23T17 Strong Genetic Variation [54]
MT1B OTUA4FFH Strong Genetic Variation [55]
OPN1LW OTFNUZ7O Strong GermlineCausalMutation [56]
OPN1MW OTPJ7LX4 Strong GermlineCausalMutation [56]
POC1B OTDIMIRZ Strong Genetic Variation [57]
PRPH OT6VUH78 Strong Genetic Variation [58]
RDH12 OTELFRRJ Strong Biomarker [59]
SAR1B OT0JZOMY Strong Genetic Variation [60]
SEMA4A OT8901H3 Strong Genetic Variation [61]
SMN2 OT54RLO1 Strong Biomarker [17]
SNRPB OT3UJ4ZU Strong Biomarker [57]
ACTN3 OT9DZ7JQ Definitive Biomarker [62]
ADAMTS18 OTRMFI04 Definitive Biomarker [63]
AMIGO3 OTIX9POY Definitive Altered Expression [27]
ARL3 OT3OGOMX Definitive Genetic Variation [16]
CCL28 OTY6XNQ7 Definitive Biomarker [64]
CD200R1 OT65Q9M6 Definitive Biomarker [65]
CFAP410 OTJ94J99 Definitive Biomarker [66]
CNTN3 OTC1274J Definitive Biomarker [67]
CNTN6 OTXVGVOR Definitive Biomarker [68]
CRX OTH435SV Definitive Autosomal dominant [69]
DUSP19 OT0RRSG9 Definitive Biomarker [70]
EDA OTAKS5WS Definitive Biomarker [71]
ELOVL4 OT2M9W26 Definitive Genetic Variation [72]
GAL3ST1 OTSFFZRD Definitive Biomarker [31]
GIT1 OTHO92S5 Definitive Biomarker [73]
GNAT2 OTD9Y4UH Definitive Genetic Variation [74]
HES5 OTW7JEHV Definitive Altered Expression [75]
IGSF1 OT3XD6U2 Definitive Biomarker [27]
ITGAD OTNS69WO Definitive Genetic Variation [76]
KCNV2 OTLS8OU5 Definitive Genetic Variation [77]
KLF7 OTS3YVA0 Definitive Biomarker [31]
LCA5 OTQTCUWS Definitive Genetic Variation [78]
MAP9 OTZD5099 Definitive Genetic Variation [79]
MFSD8 OT455EIC Definitive Genetic Variation [80]
MICAL1 OTJEDVWA Definitive Altered Expression [81]
NCR3 OT20M764 Definitive Altered Expression [82]
NLN OTFRITPU Definitive Biomarker [83]
PCARE OTUSRSB5 Definitive Genetic Variation [84]
PTPRF OTH5KF2D Definitive Biomarker [85]
RANGAP1 OTZGD3LJ Definitive Biomarker [86]
RAX2 OT1HD6CF Definitive GermlineCausalMutation [87]
SAR1A OTSSRVGV Definitive Genetic Variation [60]
SNRPN OTQB1ID1 Definitive Biomarker [88]
SNX27 OTVPS7S0 Definitive Altered Expression [89]
SPATA7 OT78G2IH Definitive Biomarker [90]
STMN2 OT0FUHLH Definitive Biomarker [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 71 DOT(s)

References

1 ADAMTS-4 in central nervous system pathologies.J Neurosci Res. 2017 Sep;95(9):1703-1711. doi: 10.1002/jnr.24021. Epub 2017 Jan 13.
2 Targeted inactivation of synaptic HRG4 (UNC119) causes dysfunction in the distal photoreceptor and slow retinal degeneration, revealing a new function.Exp Eye Res. 2007 Mar;84(3):473-85. doi: 10.1016/j.exer.2006.10.016. Epub 2006 Dec 18.
3 Characteristic Ocular Features in Cases of Autosomal Recessive PROM1 Cone-Rod Dystrophy.Invest Ophthalmol Vis Sci. 2019 May 1;60(6):2347-2356. doi: 10.1167/iovs.19-26993.
4 In Silico Functional Meta-Analysis of 5,962 ABCA4 Variants in 3,928 Retinal Dystrophy Cases.Hum Mutat. 2017 Apr;38(4):400-408. doi: 10.1002/humu.23165. Epub 2017 Feb 3.
5 Novel ADAM9 homozygous mutation in a consanguineous Egyptian family with severe cone-rod dystrophy and cataract.Br J Ophthalmol. 2014 Dec;98(12):1718-23. doi: 10.1136/bjophthalmol-2014-305231. Epub 2014 Aug 4.
6 Presymptomatic spinal cord pathology in c9orf72 mutation carriers: A longitudinal neuroimaging study.Ann Neurol. 2019 Aug;86(2):158-167. doi: 10.1002/ana.25520. Epub 2019 Jun 27.
7 Molecular genetics of cone-rod dystrophy in Chinese patients: New data from 61 probands and mutation overview of 163 probands.Exp Eye Res. 2016 May;146:252-258. doi: 10.1016/j.exer.2016.03.015. Epub 2016 Mar 16.
8 Kinematic and electromyography analysis of paraplegic gait with the assistance of mechanical orthosis and walker.J Spinal Cord Med. 2020 Nov;43(6):854-861. doi: 10.1080/10790268.2019.1585705. Epub 2019 Mar 18.
9 CEP250 mutations associated with mild cone-rod dystrophy and sensorineural hearing loss in a Japanese family.Ophthalmic Genet. 2018 Aug;39(4):500-507. doi: 10.1080/13816810.2018.1466338. Epub 2018 May 2.
10 Diseases associated with mutations in CNGA3: Genotype-phenotype correlation and diagnostic guideline.Prog Mol Biol Transl Sci. 2019;161:1-27. doi: 10.1016/bs.pmbts.2018.10.002. Epub 2018 Nov 23.
11 The Effect of Botulinum Neurotoxin Serotype a Heavy Chain on the Growth Related Proteins and Neurite Outgrowth after Spinal Cord Injury in Rats.Toxins (Basel). 2018 Feb 2;10(2):66. doi: 10.3390/toxins10020066.
12 Somatic Gene Editing of GUCY2D by AAV-CRISPR/Cas9 Alters Retinal Structure and Function in Mouse and Macaque.Hum Gene Ther. 2019 May;30(5):571-589. doi: 10.1089/hum.2018.193. Epub 2018 Dec 20.
13 Novel H6PDH mutations in two girls with premature adrenarche: 'apparent' and 'true' CRD can be differentiated by urinary steroid profiling.Eur J Endocrinol. 2013 Feb 1;168(2):K19-26. doi: 10.1530/EJE-12-0628. Print 2013 Feb.
14 Lymphatic vessel density in vocal cord carcinomas assessed with LYVE-1 receptor expression.Radiother Oncol. 2005 Nov;77(2):172-5. doi: 10.1016/j.radonc.2005.09.013. Epub 2005 Oct 17.
15 NT-3 Promotes Oligodendrocyte Proliferation and Nerve Function Recovery After Spinal Cord Injury by Inhibiting Autophagy Pathway.J Surg Res. 2020 Mar;247:128-135. doi: 10.1016/j.jss.2019.10.033. Epub 2019 Nov 24.
16 Homozygous Variant in ARL3 Causes Autosomal Recessive Cone Rod Dystrophy.Invest Ophthalmol Vis Sci. 2019 Nov 1;60(14):4811-4819. doi: 10.1167/iovs.19-27263.
17 Motor neuron pathology and behavioral alterations at late stages in a SMA mouse model.Brain Res. 2012 Mar 9;1442:66-75. doi: 10.1016/j.brainres.2011.12.056. Epub 2012 Jan 5.
18 Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration.Acta Neuropathol Commun. 2015 Jun 25;3:38. doi: 10.1186/s40478-015-0218-y.
19 A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1.Hum Mol Genet. 1998 Feb;7(2):273-7. doi: 10.1093/hmg/7.2.273.
20 Slow development of ALS-like spinal cord pathology in mutant valosin-containing protein gene knock-in mice.Cell Death Dis. 2012 Aug 16;3(8):e374. doi: 10.1038/cddis.2012.115.
21 Hyperbaric oxygen improves functional recovery of rats after spinal cord injury via activating stromal cell-derived factor-1/CXC chemokine receptor 4 axis and promoting brain-derived neurothrophic factor expression.Chin Med J (Engl). 2019 Mar 20;132(6):699-706. doi: 10.1097/CM9.0000000000000115.
22 Abnormal respiratory cilia in non-syndromic Leber congenital amaurosis with CEP290 mutations.J Med Genet. 2010 Dec;47(12):829-34. doi: 10.1136/jmg.2010.077883. Epub 2010 Aug 30.
23 Increased Levels of Circulating Glial Fibrillary Acidic Protein and Collapsin Response Mediator Protein-2 Autoantibodies in the Acute Stage of Spinal Cord Injury Predict the Subsequent Development of Neuropathic Pain.J Neurotrauma. 2018 Nov 1;35(21):2530-2539. doi: 10.1089/neu.2018.5675. Epub 2018 Jul 5.
24 Spasticity therapy reacts to astrocyte GluA1 receptor upregulation following spinal cord injury.Br J Pharmacol. 2010 Nov;161(5):972-5. doi: 10.1111/j.1476-5381.2010.00964.x.
25 Cell death after spinal cord injury is exacerbated by rapid TNF alpha-induced trafficking of GluR2-lacking AMPARs to the plasma membrane.J Neurosci. 2008 Oct 29;28(44):11391-400. doi: 10.1523/JNEUROSCI.3708-08.2008.
26 Targeted inhibition of KCa3.1 attenuates TGF--induced reactive astrogliosis through the Smad2/3 signaling pathway.J Neurochem. 2014 Jul;130(1):41-49. doi: 10.1111/jnc.12710. Epub 2014 Mar 27.
27 LINGO-1 and AMIGO3, potential therapeutic targets for neurological and dysmyelinating disorders?.Neural Regen Res. 2017 Aug;12(8):1247-1251. doi: 10.4103/1673-5374.213538.
28 Nischarin-siRNA delivered by polyethylenimine-alginate nanoparticles accelerates motor function recovery after spinal cord injury.Neural Regen Res. 2017 Oct;12(10):1687-1694. doi: 10.4103/1673-5374.217348.
29 Anti-repulsive guidance molecule-a antibody treatment and repetitive transcranial magnetic stimulation have synergistic effects on motor recovery after spinal cord injury.Neurosci Lett. 2019 Sep 14;709:134329. doi: 10.1016/j.neulet.2019.134329. Epub 2019 Jun 11.
30 Transplantation of human bone marrow-derived clonal mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model.J Tissue Eng Regen Med. 2018 Feb;12(2):e1034-e1045. doi: 10.1002/term.2425. Epub 2017 Jun 9.
31 AAV-KLF7 Promotes Descending Propriospinal Neuron Axonal Plasticity after Spinal Cord Injury.Neural Plast. 2017;2017:1621629. doi: 10.1155/2017/1621629. Epub 2017 Aug 13.
32 NMNAT1 variants cause cone and cone-rod dystrophy.Eur J Hum Genet. 2018 Mar;26(3):428-433. doi: 10.1038/s41431-017-0029-7. Epub 2017 Nov 28.
33 Evaluation of Mycoplasma gallisepticum (MG) ts-304 vaccine as a live attenuated vaccine in turkeys.Vaccine. 2018 Apr 25;36(18):2487-2493. doi: 10.1016/j.vaccine.2018.02.117. Epub 2018 Mar 26.
34 Late diagnosis of Alstrom syndrome in a Yemenite-Jewish child.Ophthalmic Genet. 2019 Feb;40(1):7-11. doi: 10.1080/13816810.2018.1561900. Epub 2019 Jan 2.
35 Autosomal Dominant Retinal Dystrophies Caused by a Founder Splice Site Mutation, c.828+3A>T, in PRPH2 and Protein Haplotypes in trans as Modifiers.Invest Ophthalmol Vis Sci. 2016 Feb;57(2):349-59. doi: 10.1167/iovs.15-16965.
36 Homozygosity mapping and whole-genome sequencing reveals a deep intronic PROM1 mutation causing cone-rod dystrophy by pseudoexon activation.Eur J Hum Genet. 2016 Mar;24(3):459-62. doi: 10.1038/ejhg.2015.144. Epub 2015 Jul 8.
37 Functional correlates of fundus autofluorescence abnormalities in patients with RPGR or RIMS1 mutations causing cone or cone rod dystrophy.Br J Ophthalmol. 2008 Jan;92(1):95-102. doi: 10.1136/bjo.2007.124008. Epub 2007 Oct 25.
38 Author Correction: Variabilities in retinal function and structure in a canine model of cone-rod dystrophy associated with RPGRIP1 support multigenic etiology.Sci Rep. 2018 Aug 24;8(1):13058. doi: 10.1038/s41598-018-31337-1.
39 Biallelic variants in TTLL5, encoding a tubulin glutamylase, cause retinal dystrophy. Am J Hum Genet. 2014 May 1;94(5):760-9. doi: 10.1016/j.ajhg.2014.04.003.
40 Association of the Asn306Ser variant of the SP4 transcription factor and an intronic variant in the beta-subunit of transducin with digenic disease.Mol Vis. 2007 Feb 28;13:287-92.
41 Viral-mediated vision rescue of a novel AIPL1 cone-rod dystrophy model.Hum Mol Genet. 2015 Feb 1;24(3):670-84. doi: 10.1093/hmg/ddu487. Epub 2014 Sep 30.
42 Aquaporin-4 expression dynamically varies after acute spinal cord injury-induced disruption of blood spinal cord barrier in rats.Neuropathology. 2019 Jun;39(3):181-186. doi: 10.1111/neup.12539. Epub 2019 Mar 27.
43 Identification of Somatic Mutations in Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type by Massive Parallel Sequencing. J Invest Dermatol. 2017 Sep;137(9):1984-1994. doi: 10.1016/j.jid.2017.04.010. Epub 2017 May 4.
44 Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7.Adv Exp Med Biol. 2018;1049:197-218. doi: 10.1007/978-3-319-71779-1_9.
45 Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am J Hum Genet. 2006 Nov;79(5):973-7. doi: 10.1086/508944. Epub 2006 Sep 27.
46 A case-control collapsing analysis identifies retinal dystrophy genes associated with ophthalmic disease in patients with no pathogenic ABCA4 variants.Genet Med. 2019 Oct;21(10):2336-2344. doi: 10.1038/s41436-019-0495-0. Epub 2019 Mar 30.
47 Genome-wide linkage and sequence analysis challenge CCDC66 as a human retinal dystrophy candidate gene and support a distinct NMNAT1-related fundus phenotype. Clin Genet. 2018 Jan;93(1):149-154. doi: 10.1111/cge.13022. Epub 2017 May 9.
48 Jalili Syndrome: Cross-sectional and Longitudinal Features of Seven Patients With Cone-Rod Dystrophy and Amelogenesis Imperfecta.Am J Ophthalmol. 2018 Apr;188:123-130. doi: 10.1016/j.ajo.2018.01.029. Epub 2018 Feb 5.
49 The correlation between CRB1 variants and the clinical severity of Brazilian patients with different inherited retinal dystrophy phenotypes.Sci Rep. 2017 Aug 17;7(1):8654. doi: 10.1038/s41598-017-09035-1.
50 Biallelic mutations in the autophagy regulator DRAM2 cause retinal dystrophy with early macular involvement. Am J Hum Genet. 2015 Jun 4;96(6):948-54. doi: 10.1016/j.ajhg.2015.04.006. Epub 2015 May 14.
51 Extending the Spectrum of EYS-Associated Retinal Disease to Macular Dystrophy.Invest Ophthalmol Vis Sci. 2019 May 1;60(6):2049-2063. doi: 10.1167/iovs.18-25531.
52 Mutation screening of the GUCA1B gene in patients with autosomal dominant cone and cone rod dystrophy.Ophthalmic Genet. 2011 Sep;32(3):151-5. doi: 10.3109/13816810.2011.559650. Epub 2011 Mar 15.
53 RNAi-mediated gene suppression in a GCAP1(L151F) cone-rod dystrophy mouse model.PLoS One. 2013;8(3):e57676. doi: 10.1371/journal.pone.0057676. Epub 2013 Mar 5.
54 IFT81 as a Candidate Gene for Nonsyndromic Retinal Degeneration.Invest Ophthalmol Vis Sci. 2017 May 1;58(5):2483-2490. doi: 10.1167/iovs.16-19133.
55 Molecular diagnosis of hypobetalipoproteinemia: an ENID review. Atherosclerosis. 2007 Dec;195(2):e19-27. doi: 10.1016/j.atherosclerosis.2007.05.003. Epub 2007 Jun 14.
56 X-linked cone dystrophy caused by mutation of the red and green cone opsins. Am J Hum Genet. 2010 Jul 9;87(1):26-39. doi: 10.1016/j.ajhg.2010.05.019. Epub 2010 Jun 24.
57 Novel compound heterozygous mutation in the POC1B gene underlie peripheral cone dystrophy in a Chinese family.Ophthalmic Genet. 2018 Jun;39(3):300-306. doi: 10.1080/13816810.2018.1430239. Epub 2018 Jan 29.
58 Autosomal dominant cone-rod dystrophy associated with a Val200Glu mutation of the peripherin/RDS gene.Retina. 1996;16(5):405-10. doi: 10.1097/00006982-199616050-00007.
59 RDH12 Mutations Cause a Severe Retinal Degeneration With Relatively Spared Rod Function.Invest Ophthalmol Vis Sci. 2018 Oct 1;59(12):5225-5236. doi: 10.1167/iovs.18-24708.
60 Chylomicron retention disease: a long term study of two cohorts.Mol Genet Metab. 2009 Jun;97(2):136-42. doi: 10.1016/j.ymgme.2009.02.003. Epub 2009 Feb 20.
61 Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J Med Genet. 2006 Apr;43(4):378-81. doi: 10.1136/jmg.2005.035055. Epub 2005 Sep 30.
62 Role of alpha-actinin-3 in contractile properties of human single muscle fibers: a case series study in paraplegics.PLoS One. 2012;7(11):e49281. doi: 10.1371/journal.pone.0049281. Epub 2012 Nov 8.
63 Expansion of ocular phenotypic features associated with mutations in ADAMTS18.JAMA Ophthalmol. 2014 Aug;132(8):996-1001. doi: 10.1001/jamaophthalmol.2014.940.
64 CCL28 promotes locomotor recovery after spinal cord injury via recruiting regulatory T cells.Aging (Albany NY). 2019 Sep 26;11(18):7402-7415. doi: 10.18632/aging.102239. Epub 2019 Sep 26.
65 CD200 modulates spinal cord injury neuroinflammation and outcome through CD200R1.Brain Behav Immun. 2018 Oct;73:416-426. doi: 10.1016/j.bbi.2018.06.002. Epub 2018 Jun 2.
66 Identification of Novel Mutations in the LRR-Cap Domain of C21orf2 in Japanese Patients With Retinitis Pigmentosa and Cone-Rod Dystrophy.Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):4255-63. doi: 10.1167/iovs.16-19450.
67 Posterior cord syndrome: Demographics and rehabilitation outcomes.J Spinal Cord Med. 2021 Mar;44(2):241-246. doi: 10.1080/10790268.2019.1585135. Epub 2019 Apr 2.
68 Induced NB-3 Limits Regenerative Potential of Serotonergic Axons after Complete Spinal Transection.J Neurotrauma. 2019 Feb 1;36(3):436-447. doi: 10.1089/neu.2018.5652. Epub 2018 Oct 10.
69 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
70 DUSP19 mediates spinal cord injury-induced apoptosis and inflammation in mouse primary microglia cells via the NF-kB signaling pathway.Neurol Res. 2020 Jan;42(1):31-38. doi: 10.1080/01616412.2019.1685068. Epub 2019 Dec 8.
71 Fibronectin EDA forms the chronic fibrotic scar after contusive spinal cord injury.Neurobiol Dis. 2018 Aug;116:60-68. doi: 10.1016/j.nbd.2018.04.014. Epub 2018 Apr 27.
72 Clinical and genetic studies of an autosomal dominant cone-rod dystrophy with features of Stargardt disease.Ophthalmic Genet. 1999 Jun;20(2):71-81. doi: 10.1076/opge.20.2.71.2287.
73 GPCR kinase 2-interacting protein-1 protects against ischemia-reperfusion injury of the spinal cord by modulating ASK1/JNK/p38 signaling.FASEB J. 2018 Jun 18:fj201800548. doi: 10.1096/fj.201800548. Online ahead of print.
74 A three base pair deletion encoding the amino acid (lysine-270) in the alpha-cone transducin gene.Mol Vis. 2004 Apr 8;10:265-71.
75 Progesterone effects on oligodendrocyte differentiation in injured spinal cord.Brain Res. 2019 Apr 1;1708:36-46. doi: 10.1016/j.brainres.2018.12.005. Epub 2018 Dec 5.
76 The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage.Exp Neurol. 2017 Sep;295:125-134. doi: 10.1016/j.expneurol.2017.06.002. Epub 2017 Jun 3.
77 Screening for variants in 20 genes in 130 unrelated patients with cone-rod dystrophy.Mol Med Rep. 2013 Jun;7(6):1779-85. doi: 10.3892/mmr.2013.1415. Epub 2013 Apr 5.
78 Knocking out lca5 in zebrafish causes cone-rod dystrophy due to impaired outer segment protein trafficking.Biochim Biophys Acta Mol Basis Dis. 2019 Oct 1;1865(10):2694-2705. doi: 10.1016/j.bbadis.2019.07.009. Epub 2019 Jul 23.
79 Variabilities in retinal function and structure in a canine model of cone-rod dystrophy associated with RPGRIP1 support multigenic etiology.Sci Rep. 2017 Oct 9;7(1):12823. doi: 10.1038/s41598-017-13112-w.
80 MFSD8 gene mutations; evidence for phenotypic heterogeneity.Ophthalmic Genet. 2019 Apr;40(2):141-145. doi: 10.1080/13816810.2019.1592200. Epub 2019 Apr 22.
81 MICAL flavoprotein monooxygenases: expression during neural development and following spinal cord injuries in the rat.Mol Cell Neurosci. 2006 Jan;31(1):52-69. doi: 10.1016/j.mcn.2005.09.001. Epub 2005 Oct 17.
82 Elevated plasma BDNF levels are correlated with NK cell activation in patients with traumatic spinal cord injury.Int Immunopharmacol. 2019 Sep;74:105722. doi: 10.1016/j.intimp.2019.105722. Epub 2019 Jun 28.
83 Abnormal cortical neuroplasticity induced by paired associative stimulation after traumatic spinal cord injury: A preliminary study.Neurosci Lett. 2018 Jan 18;664:167-171. doi: 10.1016/j.neulet.2017.11.003. Epub 2017 Nov 11.
84 C2orf71a/pcare1 is important for photoreceptor outer segment morphogenesis and visual function in zebrafish.Sci Rep. 2018 Jun 26;8(1):9675. doi: 10.1038/s41598-018-27928-7.
85 Identification of the potential dual inhibitor of protein tyrosine phosphatase sigma and leukocyte common antigen-related phosphatase by virtual screen, molecular dynamic simulations and post-analysis.J Biomol Struct Dyn. 2021 Jan;39(1):45-62. doi: 10.1080/07391102.2019.1705913. Epub 2019 Dec 27.
86 Genetic linkage of cone-rod retinal dystrophy to chromosome 19q and evidence for segregation distortion.Nat Genet. 1994 Feb;6(2):210-3. doi: 10.1038/ng0294-210.
87 Autosomal Dominant Retinal Dystrophy With Electronegative Waveform Associated With a Novel RAX2 Mutation.JAMA Ophthalmol. 2015 Jun;133(6):653-61. doi: 10.1001/jamaophthalmol.2015.0357.
88 Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model.Hum Mol Genet. 2009 Oct 15;18(20):3906-13. doi: 10.1093/hmg/ddp333. Epub 2009 Jul 21.
89 Snx27 Deletion Promotes Recovery From Spinal Cord Injury by Neuroprotection and Reduces Macrophage/Microglia Proliferation.Front Neurol. 2018 Dec 13;9:1059. doi: 10.3389/fneur.2018.01059. eCollection 2018.
90 SPATA7: Evolving phenotype from cone-rod dystrophy to retinitis pigmentosa.Ophthalmic Genet. 2016 Sep;37(3):333-8. doi: 10.3109/13816810.2015.1130154. Epub 2016 Feb 8.