General Information of Disease (ID: DISY9RWN)

Disease Name Cone-rod dystrophy
Synonyms cone rod dystrophy; cone-rod retinal dystrophy; CRD
Definition Inherited retinal dystrophies that belong to the group of pigmentary retinopathies.
Disease Hierarchy
DISGGL77: Inherited retinal dystrophy
DISY9RWN: Cone-rod dystrophy
Disease Identifiers
MONDO ID
MONDO_0015993
MESH ID
D000071700
UMLS CUI
C4085590
MedGen ID
896366
HPO ID
HP:0000548
Orphanet ID
1872

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 57 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
UNC119 OTZN6BMJ Supportive Autosomal dominant [1]
CABP4 OTL0TRR5 Limited Genetic Variation [2]
CRB1 OTXYUNG0 Limited Genetic Variation [21]
GUCA1B OT85S0J3 Limited Genetic Variation [22]
NIPAL1 OTRYI60X Limited Genetic Variation [2]
RDH12 OTELFRRJ Limited Biomarker [23]
SLC4A7 OT3Y35CV Limited Autosomal recessive [18]
ABCA4 OTMA4IG9 Supportive Autosomal dominant [19]
ADAM9 OT70Z4II Supportive Autosomal dominant [5]
ATF6 OTAFHAVI Supportive Autosomal dominant [24]
CACNA1F OTQTXNGF Supportive Autosomal dominant [6]
CACNA2D4 OTVYNX7N Supportive Autosomal dominant [25]
CDHR1 OT1ORXCM Supportive Autosomal dominant [26]
CFAP410 OTJ94J99 Supportive Autosomal dominant [27]
CNGA3 OTYQ7TYM Supportive Autosomal dominant [7]
CRX OTH435SV Supportive Autosomal dominant [28]
DRAM2 OTBOCZH8 Supportive Autosomal dominant [29]
GUCY2D OT81UJI0 Supportive Autosomal dominant [8]
NMNAT1 OTGJH9XH Supportive Autosomal dominant [20]
OPN1LW OTFNUZ7O Supportive Autosomal dominant [30]
OPN1MW OTPJ7LX4 Supportive Autosomal dominant [30]
PITPNM3 OTHLZY8D Supportive Autosomal dominant [31]
POC1B OTDIMIRZ Supportive Autosomal dominant [32]
PROM1 OTBHV8NX Supportive Autosomal dominant [9]
PRPH2 OTNH2G5H Supportive Autosomal dominant [33]
RAB28 OTZX5BP6 Supportive Autosomal dominant [34]
RAX2 OT1HD6CF Supportive Autosomal dominant [35]
RIMS1 OT10T7CK Supportive Autosomal dominant [36]
RPGR OTJ7O69I Supportive Autosomal dominant [10]
RPGRIP1 OTABESO9 Supportive Autosomal dominant [37]
SEMA4A OT8901H3 Supportive Autosomal dominant [38]
TLCD3B OTM6EPUS Supportive Autosomal dominant [39]
TTLL5 OTUKOVEM Supportive Autosomal dominant [40]
AIPL1 OT4VBD78 moderate Biomarker [41]
CNNM4 OTUXJRM1 moderate Genetic Variation [42]
NUMB OTMB586Q moderate Biomarker [43]
PHEX OTG7N3J7 moderate Genetic Variation [44]
ALMS1 OTW66JKS Strong Genetic Variation [45]
ALPG OTCIM29R Strong Biomarker [46]
ATXN7 OTL3YF1H Strong Genetic Variation [47]
CERKL OTG4YGBR Strong CausalMutation [2]
CLTA OTLHOXMQ Strong Biomarker [20]
EYS OT0NBPL5 Strong Genetic Variation [48]
GNGT2 OTRI3Q10 Strong Genetic Variation [49]
GUCA2A OTUSF75G Strong Genetic Variation [50]
PRPH OT6VUH78 Strong Genetic Variation [51]
SNRPB OT3UJ4ZU Strong Genetic Variation [52]
ADAMTS18 OTRMFI04 Definitive Biomarker [53]
ARL3 OT3OGOMX Definitive Genetic Variation [54]
ELOVL4 OT2M9W26 Definitive Genetic Variation [55]
GNAT2 OTD9Y4UH Definitive Genetic Variation [56]
LCA5 OTQTCUWS Definitive Genetic Variation [57]
MAP9 OTZD5099 Definitive Genetic Variation [58]
MFSD8 OT455EIC Definitive Genetic Variation [59]
PCARE OTUSRSB5 Definitive Genetic Variation [60]
RANGAP1 OTZGD3LJ Definitive Biomarker [61]
SPATA7 OT78G2IH Definitive Biomarker [62]
------------------------------------------------------------------------------------
⏷ Show the Full List of 57 DOT(s)
This Disease Is Related to 21 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
CNGA1 TTHIQMC Limited Genetic Variation [2]
CNGB3 TT0LJCG Limited CausalMutation [2]
NRG4 TTWAGKJ Limited Genetic Variation [3]
PROM1 TTXMZ81 Limited Biomarker [4]
RHO TTH0KSX Limited CausalMutation [2]
USH2A TTVCLLA Limited Genetic Variation [2]
ADAM9 TTTYQNS Supportive Autosomal dominant [5]
CACNA1F TTJ0SO4 Supportive Autosomal dominant [6]
CNGA3 TTW0QOV Supportive Autosomal dominant [7]
GUCY2D TTWNFC2 Supportive Autosomal dominant [8]
PROM1 TTXMZ81 Supportive Autosomal dominant [9]
RPGR TTHBDA9 Supportive Autosomal dominant [10]
ABCA4 TTLB52K moderate CausalMutation [2]
RPGR TTHBDA9 moderate Biomarker [11]
ADAM9 TTTYQNS Strong Genetic Variation [12]
CACNA1F TTJ0SO4 Strong Genetic Variation [13]
CEP250 TTPOA6U Strong Genetic Variation [14]
CEP290 TT3XBOV Strong Genetic Variation [2]
CNGA3 TTW0QOV Strong Genetic Variation [15]
TST TT51OTS Strong Genetic Variation [16]
GUCY2D TTWNFC2 Definitive Genetic Variation [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC4A7 DT03V27 Limited Autosomal recessive [18]
ABCA4 DTM4YG0 Supportive Autosomal dominant [19]
------------------------------------------------------------------------------------
This Disease Is Related to 2 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
NMNAT1 DE4D159 Supportive Autosomal dominant [20]
NMNAT1 DE4D159 Strong Genetic Variation [11]
------------------------------------------------------------------------------------

References

1 HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model. Invest Ophthalmol Vis Sci. 2000 Oct;41(11):3268-77.
2 Molecular genetic analysis using targeted NGS analysis of 677 individuals with retinal dystrophy.Sci Rep. 2019 Feb 4;9(1):1219. doi: 10.1038/s41598-018-38007-2.
3 Targeted inactivation of synaptic HRG4 (UNC119) causes dysfunction in the distal photoreceptor and slow retinal degeneration, revealing a new function.Exp Eye Res. 2007 Mar;84(3):473-85. doi: 10.1016/j.exer.2006.10.016. Epub 2006 Dec 18.
4 Characteristic Ocular Features in Cases of Autosomal Recessive PROM1 Cone-Rod Dystrophy.Invest Ophthalmol Vis Sci. 2019 May 1;60(6):2347-2356. doi: 10.1167/iovs.19-26993.
5 Loss of the metalloprotease ADAM9 leads to cone-rod dystrophy in humans and retinal degeneration in mice. Am J Hum Genet. 2009 May;84(5):683-91. doi: 10.1016/j.ajhg.2009.04.005. Epub 2009 Apr 30.
6 X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J Med Genet. 2006 Aug;43(8):699-704. doi: 10.1136/jmg.2006.040741. Epub 2006 Feb 27.
7 Homozygous missense variant in the human CNGA3 channel causes cone-rod dystrophy. Eur J Hum Genet. 2015 Apr;23(4):473-80. doi: 10.1038/ejhg.2014.136. Epub 2014 Jul 23.
8 A novel recessive GUCY2D mutation causing cone-rod dystrophy and not Leber's congenital amaurosis. Eur J Hum Genet. 2010 Oct;18(10):1121-6. doi: 10.1038/ejhg.2010.81. Epub 2010 Jun 2.
9 Cone-rod dystrophy and a frameshift mutation in the PROM1 gene. Mol Vis. 2009 Aug 28;15:1709-16.
10 X-linked cone-rod dystrophy (locus COD1): identification of mutations in RPGR exon ORF15. Am J Hum Genet. 2002 Apr;70(4):1049-53. doi: 10.1086/339620. Epub 2002 Feb 20.
11 NMNAT1 variants cause cone and cone-rod dystrophy.Eur J Hum Genet. 2018 Mar;26(3):428-433. doi: 10.1038/s41431-017-0029-7. Epub 2017 Nov 28.
12 Novel ADAM9 homozygous mutation in a consanguineous Egyptian family with severe cone-rod dystrophy and cataract.Br J Ophthalmol. 2014 Dec;98(12):1718-23. doi: 10.1136/bjophthalmol-2014-305231. Epub 2014 Aug 4.
13 A novel large in-frame deletion within the CACNA1F gene associates with a cone-rod dystrophy 3-like phenotype.PLoS One. 2013 Oct 4;8(10):e76414. doi: 10.1371/journal.pone.0076414. eCollection 2013.
14 CEP250 mutations associated with mild cone-rod dystrophy and sensorineural hearing loss in a Japanese family.Ophthalmic Genet. 2018 Aug;39(4):500-507. doi: 10.1080/13816810.2018.1466338. Epub 2018 May 2.
15 Diseases associated with mutations in CNGA3: Genotype-phenotype correlation and diagnostic guideline.Prog Mol Biol Transl Sci. 2019;161:1-27. doi: 10.1016/bs.pmbts.2018.10.002. Epub 2018 Nov 23.
16 A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1.Hum Mol Genet. 1998 Feb;7(2):273-7. doi: 10.1093/hmg/7.2.273.
17 Somatic Gene Editing of GUCY2D by AAV-CRISPR/Cas9 Alters Retinal Structure and Function in Mouse and Macaque.Hum Gene Ther. 2019 May;30(5):571-589. doi: 10.1089/hum.2018.193. Epub 2018 Dec 20.
18 Novel mutation in SLC4A7 gene causing autosomal recessive progressive rod-cone dystrophy. Ophthalmic Genet. 2020 Aug;41(4):386-389. doi: 10.1080/13816810.2020.1783691. Epub 2020 Jun 29.
19 Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet. 2000 Oct;67(4):960-6. doi: 10.1086/303079. Epub 2000 Aug 24.
20 Genome-wide linkage and sequence analysis challenge CCDC66 as a human retinal dystrophy candidate gene and support a distinct NMNAT1-related fundus phenotype. Clin Genet. 2018 Jan;93(1):149-154. doi: 10.1111/cge.13022. Epub 2017 May 9.
21 The correlation between CRB1 variants and the clinical severity of Brazilian patients with different inherited retinal dystrophy phenotypes.Sci Rep. 2017 Aug 17;7(1):8654. doi: 10.1038/s41598-017-09035-1.
22 Mutation screening of the GUCA1B gene in patients with autosomal dominant cone and cone rod dystrophy.Ophthalmic Genet. 2011 Sep;32(3):151-5. doi: 10.3109/13816810.2011.559650. Epub 2011 Mar 15.
23 RDH12 Mutations Cause a Severe Retinal Degeneration With Relatively Spared Rod Function.Invest Ophthalmol Vis Sci. 2018 Oct 1;59(12):5225-5236. doi: 10.1167/iovs.18-24708.
24 Identification of Somatic Mutations in Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type by Massive Parallel Sequencing. J Invest Dermatol. 2017 Sep;137(9):1984-1994. doi: 10.1016/j.jid.2017.04.010. Epub 2017 May 4.
25 Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am J Hum Genet. 2006 Nov;79(5):973-7. doi: 10.1086/508944. Epub 2006 Sep 27.
26 Mutations in PCDH21 cause autosomal recessive cone-rod dystrophy. J Med Genet. 2010 Oct;47(10):665-9. doi: 10.1136/jmg.2009.069120. Epub 2010 Aug 30.
27 Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. Genome Res. 2013 Feb;23(2):236-47. doi: 10.1101/gr.144105.112. Epub 2012 Oct 26.
28 A novel CRX mutation by whole-exome sequencing in an autosomal dominant cone-rod dystrophy pedigree. Int J Ophthalmol. 2015 Dec 18;8(6):1112-7. doi: 10.3980/j.issn.2222-3959.2015.06.06. eCollection 2015.
29 Biallelic mutations in the autophagy regulator DRAM2 cause retinal dystrophy with early macular involvement. Am J Hum Genet. 2015 Jun 4;96(6):948-54. doi: 10.1016/j.ajhg.2015.04.006. Epub 2015 May 14.
30 X-linked cone dystrophy caused by mutation of the red and green cone opsins. Am J Hum Genet. 2010 Jul 9;87(1):26-39. doi: 10.1016/j.ajhg.2010.05.019. Epub 2010 Jun 24.
31 Mutation in the PYK2-binding domain of PITPNM3 causes autosomal dominant cone dystrophy (CORD5) in two Swedish families. Eur J Hum Genet. 2007 Jun;15(6):664-71. doi: 10.1038/sj.ejhg.5201817. Epub 2007 Mar 21.
32 Disruption of the basal body protein POC1B results in autosomal-recessive cone-rod dystrophy. Am J Hum Genet. 2014 Aug 7;95(2):131-42. doi: 10.1016/j.ajhg.2014.06.012. Epub 2014 Jul 10.
33 RDS/peripherin gene mutations are frequent causes of central retinal dystrophies. J Med Genet. 1997 Aug;34(8):620-6. doi: 10.1136/jmg.34.8.620.
34 Mutations in RAB28, encoding a farnesylated small GTPase, are associated with autosomal-recessive cone-rod dystrophy. Am J Hum Genet. 2013 Jul 11;93(1):110-7. doi: 10.1016/j.ajhg.2013.05.005. Epub 2013 Jun 6.
35 QRX, a novel homeobox gene, modulates photoreceptor gene expression. Hum Mol Genet. 2004 May 15;13(10):1025-40. doi: 10.1093/hmg/ddh117. Epub 2004 Mar 17.
36 Genomic organisation and alternative splicing of human RIM1, a gene implicated in autosomal dominant cone-rod dystrophy (CORD7). Genomics. 2003 Mar;81(3):304-14. doi: 10.1016/s0888-7543(03)00010-7.
37 Evidence of RPGRIP1 gene mutations associated with recessive cone-rod dystrophy. J Med Genet. 2003 Aug;40(8):616-9. doi: 10.1136/jmg.40.8.616.
38 Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J Med Genet. 2006 Apr;43(4):378-81. doi: 10.1136/jmg.2005.035055. Epub 2005 Sep 30.
39 Ceramide synthase TLCD3B is a novel gene associated with human recessive retinal dystrophy. Genet Med. 2021 Mar;23(3):488-497. doi: 10.1038/s41436-020-01003-x. Epub 2020 Oct 20.
40 Biallelic variants in TTLL5, encoding a tubulin glutamylase, cause retinal dystrophy. Am J Hum Genet. 2014 May 1;94(5):760-9. doi: 10.1016/j.ajhg.2014.04.003.
41 Viral-mediated vision rescue of a novel AIPL1 cone-rod dystrophy model.Hum Mol Genet. 2015 Feb 1;24(3):670-84. doi: 10.1093/hmg/ddu487. Epub 2014 Sep 30.
42 Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta.Am J Hum Genet. 2009 Feb;84(2):259-65. doi: 10.1016/j.ajhg.2009.01.006. Epub 2009 Feb 5.
43 Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease.Am J Hum Genet. 2017 Jan 5;100(1):75-90. doi: 10.1016/j.ajhg.2016.12.003. Epub 2016 Dec 29.
44 An Xp22.1-p22.2 YAC contig encompassing the disease loci for RS, KFSD, CLS, HYP and RP15: refined localization of RS.Eur J Hum Genet. 1996;4(2):101-4. doi: 10.1159/000472177.
45 Late diagnosis of Alstrom syndrome in a Yemenite-Jewish child.Ophthalmic Genet. 2019 Feb;40(1):7-11. doi: 10.1080/13816810.2018.1561900. Epub 2019 Jan 2.
46 Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy.Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9039-44. doi: 10.1073/pnas.96.16.9039.
47 Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7.Adv Exp Med Biol. 2018;1049:197-218. doi: 10.1007/978-3-319-71779-1_9.
48 Extending the Spectrum of EYS-Associated Retinal Disease to Macular Dystrophy.Invest Ophthalmol Vis Sci. 2019 May 1;60(6):2049-2063. doi: 10.1167/iovs.18-25531.
49 Exon screening of the genes encoding the beta- and gamma-subunits of cone transducin in patients with inherited retinal disease.Mol Vis. 1998 Sep 17;4:16.
50 Guanylate cyclase activating proteins, guanylate cyclase and disease.Adv Exp Med Biol. 2002;514:411-38. doi: 10.1007/978-1-4615-0121-3_25.
51 Autosomal dominant cone-rod dystrophy associated with a Val200Glu mutation of the peripherin/RDS gene.Retina. 1996;16(5):405-10. doi: 10.1097/00006982-199616050-00007.
52 The Spectrum of Structural and Functional Abnormalities in Female Carriers of Pathogenic Variants in the RPGR Gene.Invest Ophthalmol Vis Sci. 2018 Aug 1;59(10):4123-4133. doi: 10.1167/iovs.17-23453.
53 Expansion of ocular phenotypic features associated with mutations in ADAMTS18.JAMA Ophthalmol. 2014 Aug;132(8):996-1001. doi: 10.1001/jamaophthalmol.2014.940.
54 Homozygous Variant in ARL3 Causes Autosomal Recessive Cone Rod Dystrophy.Invest Ophthalmol Vis Sci. 2019 Nov 1;60(14):4811-4819. doi: 10.1167/iovs.19-27263.
55 Clinical and genetic studies of an autosomal dominant cone-rod dystrophy with features of Stargardt disease.Ophthalmic Genet. 1999 Jun;20(2):71-81. doi: 10.1076/opge.20.2.71.2287.
56 A three base pair deletion encoding the amino acid (lysine-270) in the alpha-cone transducin gene.Mol Vis. 2004 Apr 8;10:265-71.
57 Knocking out lca5 in zebrafish causes cone-rod dystrophy due to impaired outer segment protein trafficking.Biochim Biophys Acta Mol Basis Dis. 2019 Oct 1;1865(10):2694-2705. doi: 10.1016/j.bbadis.2019.07.009. Epub 2019 Jul 23.
58 Variabilities in retinal function and structure in a canine model of cone-rod dystrophy associated with RPGRIP1 support multigenic etiology.Sci Rep. 2017 Oct 9;7(1):12823. doi: 10.1038/s41598-017-13112-w.
59 MFSD8 gene mutations; evidence for phenotypic heterogeneity.Ophthalmic Genet. 2019 Apr;40(2):141-145. doi: 10.1080/13816810.2019.1592200. Epub 2019 Apr 22.
60 C2orf71a/pcare1 is important for photoreceptor outer segment morphogenesis and visual function in zebrafish.Sci Rep. 2018 Jun 26;8(1):9675. doi: 10.1038/s41598-018-27928-7.
61 Genetic linkage of cone-rod retinal dystrophy to chromosome 19q and evidence for segregation distortion.Nat Genet. 1994 Feb;6(2):210-3. doi: 10.1038/ng0294-210.
62 SPATA7: Evolving phenotype from cone-rod dystrophy to retinitis pigmentosa.Ophthalmic Genet. 2016 Sep;37(3):333-8. doi: 10.3109/13816810.2015.1130154. Epub 2016 Feb 8.