General Information of Drug Combination (ID: DCXENFQ)

Drug Combination Name
Galantamine Tetracycline
Indication
Disease Entry Status REF
Chronic myelogenous leukemia Investigative [1]
Component Drugs Galantamine   DMEO794 Tetracycline   DMZA017
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: KBM-7
Zero Interaction Potency (ZIP) Score: 7.59
Bliss Independence Score: 7.59
Loewe Additivity Score: 21.43
LHighest Single Agent (HSA) Score: 21.44

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Galantamine
Disease Entry ICD 11 Status REF
Alzheimer disease 8A20 Approved [2]
Traumatic brain injury NA07.Z Approved [3]
Galantamine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Acetylcholinesterase (AChE) TT1RS9F ACES_HUMAN Inhibitor [6]
------------------------------------------------------------------------------------
Galantamine Interacts with 2 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [7]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [7]
------------------------------------------------------------------------------------
Galantamine Interacts with 5 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cholinesterase (BCHE) OTOH3WQ9 CHLE_HUMAN Decreases Activity [8]
Cocaine esterase (CES2) OTC647SQ EST2_HUMAN Decreases Activity [9]
Neuronal acetylcholine receptor subunit beta-2 (CHRNB2) OTNAT2M5 ACHB2_HUMAN Affects Binding [10]
Acetylcholinesterase (ACHE) OT2H8HG6 ACES_HUMAN Decreases Activity [11]
Neuronal acetylcholine receptor subunit alpha-4 (CHRNA4) OT1H0ZXC ACHA4_HUMAN Affects Binding [10]
------------------------------------------------------------------------------------
Indication(s) of Tetracycline
Disease Entry ICD 11 Status REF
Acne vulgaris ED80 Approved [4]
Actinomycosis N.A. Approved [4]
Acute gonococcal cervicitis N.A. Approved [4]
Acute gonococcal epididymo-orchitis N.A. Approved [4]
Bacterial infection 1A00-1C4Z Approved [5]
Bronchitis CA20 Approved [4]
Brucellosis N.A. Approved [4]
Lymphogranuloma venereum N.A. Approved [4]
Ornithosis N.A. Approved [4]
Pneumonia CA40 Approved [4]
Q fever N.A. Approved [4]
Relapsing fever N.A. Approved [4]
Rickettsialpox N.A. Approved [4]
Rocky mountain spotted fever N.A. Approved [4]
Syphilis N.A. Approved [4]
Trachoma N.A. Approved [4]
Typhus N.A. Approved [4]
Urinary tract infection GC08 Approved [4]
Yaws N.A. Approved [4]
Pelvic inflammatory disease GA05 Investigative [4]
Sinusitis CA0A.Z Investigative [4]
Tetracycline Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Staphylococcus 30S ribosomal subunit (Stap-coc pbp2) TTQ8KVI F4NA87_STAAU Binder [13]
------------------------------------------------------------------------------------
Tetracycline Interacts with 5 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [14]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [15]
Organic anion transporter 2 (SLC22A7) DT0OC1Q S22A7_HUMAN Substrate [16]
Organic anion transporter 3 (SLC22A8) DTVP67E S22A8_HUMAN Substrate [16]
Organic anion transporter 4 (SLC22A11) DT06JWZ S22AB_HUMAN Substrate [16]
------------------------------------------------------------------------------------
Tetracycline Interacts with 44 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Solute carrier family 22 member 7 (SLC22A7) OTKTNH1W S22A7_HUMAN Increases Transport [17]
Organic anion transporter 3 (SLC22A8) OT8BY933 S22A8_HUMAN Increases Uptake [16]
Glutathione S-transferase P (GSTP1) OTLP0A0Y GSTP1_HUMAN Decreases Activity [18]
Glutathione S-transferase Mu 3 (GSTM3) OTLA2WJT GSTM3_HUMAN Decreases Activity [18]
Nuclear protein 1 (NUPR1) OT4FU8C0 NUPR1_HUMAN Increases Expression [12]
Alpha-1-antichymotrypsin (SERPINA3) OT9BP2S0 AACT_HUMAN Increases Expression [12]
Asparagine synthetase (ASNS) OT8R922G ASNS_HUMAN Increases Expression [12]
Inhibin beta E chain (INHBE) OTOI2NYG INHBE_HUMAN Increases Expression [12]
AP-1 complex subunit sigma-1A (AP1S1) OTQ2H8DN AP1S1_HUMAN Decreases Expression [12]
Transgelin (TAGLN) OTAEZ0KP TAGL_HUMAN Decreases Expression [12]
Fibronectin type III domain-containing protein 4 (FNDC4) OTOQK0WK FNDC4_HUMAN Increases Expression [12]
Protein DEPP1 (DEPP1) OTB36PHJ DEPP1_HUMAN Increases Expression [12]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [19]
Alternative prion protein (PRNP) OTE85L1Q APRIO_HUMAN Affects Binding [20]
Claudin-11 (CLDN11) OTNN6UTL CLD11_HUMAN Decreases Expression [21]
72 kDa type IV collagenase (MMP2) OT5NIWA2 MMP2_HUMAN Decreases Activity [22]
Stromelysin-1 (MMP3) OTGBI74Z MMP3_HUMAN Decreases Activity [22]
Integrin alpha-5 (ITGA5) OT3RCI67 ITA5_HUMAN Increases Expression [21]
Insulin-like growth factor-binding protein 1 (IGFBP1) OT6UQV2K IBP1_HUMAN Increases Expression [23]
Integrin alpha-M (ITGAM) OTAG6HWU ITAM_HUMAN Decreases Expression [21]
DNA topoisomerase 2-alpha (TOP2A) OT6LPS08 TOP2A_HUMAN Decreases Expression [24]
Integrin alpha-L (ITGAL) OTCUQAIS ITAL_HUMAN Decreases Expression [21]
Neutrophil collagenase (MMP8) OTZXH19L MMP8_HUMAN Decreases Activity [22]
Integrin alpha-3 (ITGA3) OTBCH21D ITA3_HUMAN Decreases Expression [21]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [25]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [25]
Sterol regulatory element-binding protein 1 (SREBF1) OTWBRPAI SRBP1_HUMAN Increases Expression [23]
Collagenase 3 (MMP13) OTY8BZIE MMP13_HUMAN Decreases Activity [22]
Gap junction alpha-8 protein (GJA8) OTZCPRKD CXA8_HUMAN Decreases Expression [21]
Microsomal triglyceride transfer protein large subunit (MTTP) OTNUVSDT MTP_HUMAN Decreases Expression [23]
Claudin-15 (CLDN15) OT9K0KI7 CLD15_HUMAN Decreases Expression [21]
Claudin-6 (CLDN6) OTEN8ID2 CLD6_HUMAN Decreases Expression [21]
Claudin-8 (CLDN8) OT7IIWXG CLD8_HUMAN Decreases Expression [21]
Claudin-2 (CLDN2) OTRF3D6Y CLD2_HUMAN Decreases Expression [21]
Claudin-10 (CLDN10) OT2CVAKY CLD10_HUMAN Decreases Expression [21]
Peroxisomal bifunctional enzyme (EHHADH) OTBAAHL5 ECHP_HUMAN Decreases Expression [23]
Diacylglycerol O-acyltransferase 2 (DGAT2) OTE5PDD0 DGAT2_HUMAN Increases Expression [25]
Neurogenic locus notch homolog protein 4 (NOTCH4) OTBCHB61 NOTC4_HUMAN Decreases Expression [21]
Angiotensin-converting enzyme 2 (ACE2) OTTRZGU7 ACE2_HUMAN Increases Expression [26]
Gap junction delta-2 protein (GJD2) OTDR288R CXD2_HUMAN Decreases Expression [21]
Neurogenic locus notch homolog protein 3 (NOTCH3) OTMVVA7F NOTC3_HUMAN Decreases Expression [21]
Solute carrier family 22 member 6 (SLC22A6) OTKRCBVM S22A6_HUMAN Increases Export [16]
ATP-binding cassette sub-family C member 4 (ABCC4) OTO27PAL MRP4_HUMAN Increases Transport [27]
Organic anion transporter 7 (SLC22A9) OTO4BJCC S22A9_HUMAN Increases Export [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 44 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6693).
3 Galantamine FDA Label
4 Tetracycline FDA Label
5 How many modes of action should an antibiotic have Curr Opin Pharmacol. 2008 Oct;8(5):564-73.
6 [From symptomatic to disease modifying therapy Recent developments in the pharmacotherapy of Alzheimer's disease]. Fortschr Neurol Psychiatr. 2009 Jun;77(6):326-33.
7 Clinical pharmacokinetics of galantamine. Clin Pharmacokinet. 2003;42(15):1383-92.
8 Lichens of parmelioid clade as promising multitarget neuroprotective agents. Chem Res Toxicol. 2019 Jun 17;32(6):1165-1177.
9 Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors. Chem Biol Interact. 2013 Mar 25;203(1):226-30.
10 Cholinergic drugs potentiate human nicotinic alpha4beta2 acetylcholine receptors by a competitive mechanism. Eur J Pharmacol. 2005 Feb 21;509(2-3):97-108. doi: 10.1016/j.ejphar.2004.12.037.
11 Potencies and selectivities of inhibitors of acetylcholinesterase and its molecular forms in normal and Alzheimer's disease brain. Acta Biol Hung. 2003;54(2):183-9. doi: 10.1556/ABiol.54.2003.2.7.
12 Determination of phospholipidosis potential based on gene expression analysis in HepG2 cells. Toxicol Sci. 2007 Mar;96(1):101-14.
13 The glycylcyclines: a comparative review with the tetracyclines. Drugs. 2004;64(1):63-88.
14 Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016 Jan 1;370(1):153-64.
15 Arginine-482 is not essential for transport of antibiotics, primary bile acids and unconjugated sterols by the human breast cancer resistance protein (ABCG2). Biochem J. 2005 Jan 15;385(Pt 2):419-26.
16 Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol. 2002 Jan;88(1):69-76.
17 Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol. 2005 May;57(5):573-8.
18 Inhibition of glutathione S-transferases by antimalarial drugs possible implications for circumventing anticancer drug resistance. Int J Cancer. 2002 Feb 10;97(5):700-5.
19 A comprehensive in vitro and in silico analysis of antibiotics that activate pregnane X receptor and induce CYP3A4 in liver and intestine. Drug Metab Dispos. 2008 Aug;36(8):1689-97.
20 Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J Mol Biol. 2000 Jul 28;300(5):1309-22. doi: 10.1006/jmbi.2000.3840.
21 Effects of residual levels of tetracycline on the barrier functions of human intestinal epithelial cells. Food Chem Toxicol. 2017 Nov;109(Pt 1):253-263. doi: 10.1016/j.fct.2017.09.004. Epub 2017 Sep 4.
22 Synthesis and in vitro evaluation of targeted tetracycline derivatives: effects on inhibition of matrix metalloproteinases. Bioorg Med Chem. 2007 Mar 15;15(6):2368-74. doi: 10.1016/j.bmc.2007.01.026. Epub 2007 Jan 19.
23 Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis. Toxicol Appl Pharmacol. 2016 Jul 1;302:1-9. doi: 10.1016/j.taap.2016.04.007. Epub 2016 Apr 16.
24 Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription. J Biol Chem. 2013 Feb 15;288(7):4567-82. doi: 10.1074/jbc.M112.411611. Epub 2013 Jan 4.
25 Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice. Toxicol Sci. 2015 Jun;145(2):273-82. doi: 10.1093/toxsci/kfv049. Epub 2015 Mar 4.
26 Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020 Dec;94(12):4037-4041. doi: 10.1007/s00204-020-02869-1. Epub 2020 Aug 17.
27 Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm Res. 2007 Dec;24(12):2281-96.